


checked by 17 2/24/17

#### **CETIFICATION**

SDG No:

JC36373

373 La

Laboratory:

Accutest, New Jersey

Site:

BMSMC, Humacao, PR

Matrix:

Soil

SUMMARY:

Soil samples (Table 1) were collected on the BMSMC facility. The BMSMC facility is located in Humacao, PR. Samples were taken January 25, 2017 and were analyzed in Accutest Laboratory of Dayton, New Jersey that reported the data under SDG No.: JC36373. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

| SAMPLE ID  | SAMPLE<br>DESCRIPTION | MATRIX                   | ANALYSIS PERFORMED                             |
|------------|-----------------------|--------------------------|------------------------------------------------|
| JC36373-1  | FTSSS-1               | Soil                     | SVOCs; PAHs (SIM); LMWA;<br>Pesticides         |
| JC36373-2  | FTFSS-2               | Soil                     | SVOCs; PAHs (SIM); LMWA;<br>Pesticides         |
| JC36373-3  | FTFSS-3               | Soil                     | SVOCs; PAHs (SIM); LMWA;<br>Pesticides         |
| JC36373-4  | BRSS-1                | Soil                     | SVOCs; PAHs (SIM); Metals                      |
| JC36373-5  | BRSS-1 DUP            | Soil                     | SVOCs; PAHs (SIM); Metals                      |
| JC36373-6  | BRSS-2                | Soil                     | SVOCs; PAHs (SIM); Metals                      |
| JC36373-7  | B5SS-1                | Soil                     | SVOCs; PAHs (SIM); LMWA;<br>Pesticides         |
| JC36373-8  | B5SS-2                | Soil                     | SVOCs; PAHs (SIM); LMWA;<br>Pesticides         |
| JC36373-9  | EB-012517             | AQ -                     | SVOCs; PAHs (SIM); LMWA;                       |
|            |                       | Equipment<br>Blank       | Pesticides; Metals                             |
| JC36373-10 | FB-012517             | AQ – Field<br>Blank Soil | SVOCs; PAHs (SIM); LMWA;<br>Pesticides; Metals |

ifael Infante

Mendez 1C # 188

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

February 20, 2017

# Report of Analysis

Page 1 of 3

Client Sample ID: FTFSS-1 Lab Sample ID: Matrix:

JC36373-1 SO - Soil

SW846 8270D SW846 3546

**Date Sampled:** 01/25/17

Q

Date Received: 01/27/17

Method: Project:

BMSMC, PR

Percent Solids: 92.4

|        | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|--------|-----------|----|----------|----|-----------|------------|------------------|
| Run #1 | 6P34787.D | 1  | 02/08/17 | AC | 01/30/17  | OP173      | E6P1601          |
| Run #2 |           |    |          |    |           |            |                  |

Initial Weight 30.7 g

Final Volume 1.0 ml

Run #1 Run #2

## **ABN Special List**

| CAS No. Compound |                            | Result | RL  | MDL | Units |
|------------------|----------------------------|--------|-----|-----|-------|
| 95-57-8          | 2-Chlorophenol             | ND     | 71  | 17  | ug/kg |
| 59-50-7          | 4-Chloro-3-methyl phenol   | ND     | 180 | 22  | ug/kg |
| 120-83-2         | 2,4-Dichlorophenol         | ND     | 180 | 30  | ug/kg |
| 105-67-9         | 2,4-Dimethylphenol         | ND     | 180 | 63  | ug/kg |
| 51-28-5          | 2,4-Dinitrophenol          | ND     | 180 | 130 | ug/kg |
| 534-52-1         | 4,6-Dinitro-o-cresol       | ND     | 180 | 38  | ug/kg |
| 95-48-7          | 2-Methylphenol             | ND     | 71  | 23  | ug/kg |
|                  | 3&4-Methylphenol           | ND     | 71  | 29  | ug/kg |
| 88-75-5          | 2-Nitrophenol              | ND     | 180 | 23  | ug/kg |
| 100-02-7         | 4-Nitrophenol              | ND     | 350 | 94  | ug/kg |
| 87-86-5          | Pentachlorophenol          | ND     | 140 | 33  | ug/kg |
| 108-95-2         | Phenol                     | ND     | 71  | 18  | ug/kg |
| 58-90-2          | 2,3,4,6-Tetrachlorophenol  | ND     | 180 | 23  | ug/kg |
| 95-95-4          | 2,4,5-Trichlorophenol      | ND     | 180 | 26  | ug/kg |
| 88-06-2          | 2,4,6-Trichlorophenol      | ND     | 180 | 21  | ug/kg |
| 83-32-9          | Acenaphthene               | ND     | 35  | 12  | ug/kg |
| 208-96-8         | Acenaphthylene             | ND     | 35  | 18  | ug/kg |
| 98-86-2          | Acetophenone               | ND     | 180 | 7.6 | ug/kg |
| 120-12-7         | Anthracene                 | ND     | 35  | 22  | ug/kg |
| 1912-24-9        | Atrazine                   | ND     | 71  | 15  | ug/kg |
| 56-55-3          | Benzo(a)anthracene         | ND     | 35  | 10  | ug/kg |
| 205-99-2         | Benzo(b)fluoranthene       | ND     | 35  | 16  | ug/kg |
| 191-24-2         | Benzo(g,h,i)perylene       | ND     | 35  | 18  | ug/kg |
| 207-08-9         | Benzo(k)fluoranthene       | ND     | 35  | 16  | ug/kg |
| 101-55-3         | 4-Bromophenyl phenyl ether | ND     | 71  | 14  | ug/kg |
| 85-68-7          | Butyl benzyl phthalate     | ND     | 71  | 8.6 | ug/kg |
| 92-52-4          | 1, l'-Biphenyl             | ND     | 71  | 4.8 | ug/kg |
| 100-52-7         | Benzaldehyde               | ND     | 180 | 8.7 | ug/kg |
| 91-58-7          | 2-Chloronaphthalene        | ND     | 71  | 8.4 | ug/kg |
| 106-47-8         | 4-Chloroaniline            | ND     | 180 | 13  | ug/kg |
| 86-74-8          | Carbazole                  | ND     | 71  | 5.1 | ug/kg |



ND = Not detected

105-60-2

MDL = Method Detection Limit

ND

71

14

RL = Reporting Limit

E = Indicates value exceeds calibration range

Caprolactam

J = Indicates an estimated value

ug/kg

B = Indicates analyte found in associated method blank



Client Sample ID: FTFSS-1 Lab Sample ID: Matrix:

JC36373-1 SO - Soil

BMSMC, PR

SW846 8270D SW846 3546

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 92.4

### **ABN Special List**

Method:

Project:

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q   |
|-----------|-----------------------------|--------|--------|------|-------|-----|
| 218-01-9  | Chrysene                    | ND     | 35     | 11   | ug/kg |     |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 71     | 7.5  | ug/kg |     |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 71     | 15   | ug/kg |     |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 71     | 13   | ug/kg |     |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 71     | 11   | ug/kg |     |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 35     | 11   | ug/kg |     |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 35     | 18   | ug/kg |     |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 71     | 29   | ug/kg |     |
| 123-91-1  | 1,4-Dioxane                 | ND     | 35     | 23   | ug/kg |     |
| 132-64-9  | Dibenzofuran                | ND     | 71     | 14   | ug/kg |     |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 71     | 5.7  | ug/kg |     |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 71     | 8.8  | ug/kg |     |
| 84-66-2   | Diethyl phthalate           | ND     | 71     | 7.5  | ug/kg |     |
| 131-11-3  | Dimethyl phthalate          | ND     | 71     | 6.3  | ug/kg |     |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 71     | 8.2  | ug/kg |     |
| 206-44-0  | Fluoranthene                | ND     | 35     | 16   | ug/kg |     |
| 86-73-7   | Fluorene                    | ND     | 35     | 16   | ug/kg |     |
| 118-74-1  | Hexachlorobenzene           | ND     | 71     | 8.9  | ug/kg |     |
| 87-68-3   | Hexachlorobutadiene         | ND     | 35     | 14   | ug/kg |     |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 350    | 14   | ug/kg |     |
| 67-72-1   | Hexachloroethane            | ND     | 180    | 17   | ug/kg |     |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 35     | 17   | ug/kg |     |
| 78-59-1   | Isophorone                  | ND     | 71     | 7.5  | ug/kg |     |
| 90-12-0   | I-Methylnaphthalene         | ND     | 71     | 6.9  | ug/kg |     |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 71     | 8.0  | ug/kg |     |
| 88-74-4   | 2-Nitroaniline              | ND     | 180    | 8.3  | ug/kg |     |
| 99-09-2   | 3-Nitroaniline              | ND     | 180    | 8.8  | ug/kg |     |
| 100-01-6  | 4-Nitroaniline              | ND     | 180    | 9.1  | ug/kg |     |
| 91-20-3   | Naphthalene                 | ND     | 35     | 9.9  | ug/kg |     |
| 98-95-3   | Nitrobenzene                | ND     | 71     | 14   | ug/kg |     |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 71     | 10   | ug/kg |     |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 180    | 13   | ug/kg |     |
| 85-01-8   | Phenanthrene                | ND     | 35     | 12   | ug/kg | / 3 |
| 129-00-0  | Pyrene                      | ND     | 35     | 11   | ug/kg | 13  |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 180    | 9.0  | ug/kg | 121 |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   | 6   |
| 367-12-4  | 2-Fluorophenol              | 69%    |        | 23-1 | 15%   |     |
|           |                             |        |        |      |       |     |

ND = Not detected

4165-62-2

MDL = Method Detection Limit

70%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Phenol-d5

J = Indicates an estimated value

27-114%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



fael Infante Méndez IC # 1888

Page 3 of 3

Client Sample ID: FTFSS-1 Lab Sample ID: Matrix:

JC36373-1

SO - Soil SW846 8270D SW846 3546 Date Received: 01/27/17 Percent Solids: 92.4

Date Sampled: 01/25/17

Method: Project:

BMSMC, PR

## **ABN Special List**

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 82%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 69%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 71%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 71%    |        | 36-134% |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# **Report of Analysis**

Page 1 of 1

Client Sample ID: FTFSS-1 Lab Sample ID:

JC36373-1

SO - Soil

Date Sampled: 01/25/17 Date Received: 01/27/17

Matrix: Method:

SW846 8270D BY SIM SW846 3546

Percent Solids: 92.4

Project:

BMSMC, PR

Q

|        | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|--------|-----------|----|----------|----|-----------|------------|------------------|
| Run #1 | 4M69683.D | 1  | 01/31/17 | SG | 01/30/17  | OP173A     | E4M3202          |
| Run #2 |           |    |          |    |           |            |                  |

|        | Initial Weight | Final Volume |
|--------|----------------|--------------|
| Run #1 | 30.7 g         | 1.0 ml       |

Run #2

| CAS No.            | Compound                                 | Result   | RL         | MDL          | Units          |
|--------------------|------------------------------------------|----------|------------|--------------|----------------|
| 50-32-8<br>53-70-3 | Benzo(a)pyrene<br>Dibenzo(a,h)anthracene | ND<br>ND | 3.5<br>3.5 | 0.86<br>0.82 | ug/kg<br>ug/kg |
| CAS No.            | Surrogate Recoveries                     | Run# 1   | Run# 2     | Limi         | ts             |
| 4165-60-0          | Nitrobenzene-d5                          | 48%      |            | 15-13        |                |
| 321-60-8           | 2-Fluorobiphenyl                         | 56%      |            | 12-14        |                |
| 1718-51-0          | Terphenyl-d14                            | 77%      |            | 10-15        | 57%            |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

# **Report of Analysis**

By

**XPL** 

Page 1 of 1

Client Sample ID: FTFSS-1 Lab Sample ID:

JC36373-1

Date Sampled: 01/25/17

Matrix: Method: SO - Soil SW846-8015C (DAI)

DF

1

Date Received: 01/27/17

Project:

Percent Solids: 92.4

BMSMC, PR

Prep Batch n/a

Q

**Prep Date** 

n/a

**Analytical Batch** GGH5640

Run #1 Run #2

Initial Weight

GH108425.D

Run #1 5.0 g

Run #2

Low Molecular Alcohol List

File ID

| CAS No.  | Compound             | Result | RL     | MDL  | Units |
|----------|----------------------|--------|--------|------|-------|
| 64-17-5  | Ethanol              | ND     | 110    | 75   | ug/kg |
| 78-83-1  | Isobutyl Alcohol     | ND     | 110    | 64   | ug/kg |
| 67-63-0  | Isopropyl Alcohol    | ND     | 110    | 62   | ug/kg |
| 71-23-8  | n-Propyl Alcohol     | ND     | 110    | 44   | ug/kg |
| 71-36-3  | n-Butyl Alcohol      | ND     | 110    | 59   | ug/kg |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 110    | 58   | ug/kg |
| 67-56-1  | Methanol             | ND     | 220    | 52   | ug/kg |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |
| 111-27-3 | Hexanol              | 101%   |        | 52-1 | 41%   |
| 111-27-3 | Hexanol              | 107%   |        | 52-1 | 41%   |

Analyzed

01/30/17





MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: FTFSS-1 Lab Sample ID:

JC36373-1

Matrix: Method: Project:

SO - Soil

SW846 8081B SW846 3546

BMSMC, PR

Date Sampled: 01/25/17

Q

Percent Solids: 92.4

Date Received: 01/27/17

**Analytical Batch** File 1D DF By Prep Date Prep Batch Analyzed OP215 G4G2017 Run #1 4G77553.D 1 02/01/17 KD 01/31/17

Run #2

Run #1

Run #2

Initial Weight

Final Volume

15.7 g

10.0 ml

## Pesticide TCL List

| CAS No. Compound |                      | Result | RL     | MDL  | Units |
|------------------|----------------------|--------|--------|------|-------|
| 309-00-2         | Aldrin               | ND     | 0.69   | 0.33 | ug/kg |
| 319-84-6         | alpha-BHC            | ND     | 0.69   | 0.37 | ug/kg |
| 319-85-7         | beta-BHC             | ND     | 0.69   | 0.43 | ug/kg |
| 319-86-8         | delta-BHC            | ND     | 0.69   | 0.31 | ug/kg |
| 58-89-9          | gamma-BHC (Lindane)  | ND     | 0.69   | 0.30 | ug/kg |
| 5103-71-9        | alpha-Chlordane      | ND     | 0.69   | 0.33 | ug/kg |
| 5103-74-2        | gamma-Chlordane      | ND     | 0.69   | 0.30 | ug/kg |
| 60-57-1          | Dieldrin             | ND     | 0.69   | 0.34 | ug/kg |
| 72-54-8          | 4,4'-DDD             | ND     | 0.69   | 0.44 | ug/kg |
| 72-55-9          | 4,4'-DDE             | ND     | 0.69   | 0.36 | ug/kg |
| 50-29-3          | 4,4'-DDT             | ND     | 0.69   | 0.41 | ug/kg |
| 72-20-8          | Endrin               | ND     | 0.69   | 0.32 | ug/kg |
| 1031-07-8        | Endosulfan sulfate   | ND     | 0.69   | 0.28 | ug/kg |
| 7421-93-4        | Endrin aldehyde      | ND     | 0.69   | 0.41 | ug/kg |
| 959-98-8         | Endosulfan-I         | ND     | 0.69   | 0.36 | ug/kg |
| 33213-65-9       | Endosulfan-II        | ND     | 0.69   | 0.36 | ug/kg |
| 76-44-8          | Heptachlor           | ND     | 0.69   | 0.34 | ug/kg |
| 1024-57-3        | Heptachlor epoxide   | ND     | 0.69   | 0.37 | ug/kg |
| 72-43-5          | Methoxychlor         | ND     | 1.4    | 0.34 | ug/kg |
| 53494-70-5       | Endrin ketone        | ND     | 0.69   | 0.53 | ug/kg |
| 8001-35-2        | Toxaphene            | ND     | 17     | 7.2  | ug/kg |
| CAS No.          | Surrogate Recoveries | Run# 1 | Run# 2 | Limi | ts    |

| CAS No.   | Surrogate Recoveries | Kuli# I | Kuii# 2 | Limits  |
|-----------|----------------------|---------|---------|---------|
| 877-09-8  | Tetrachloro-m-xylene | 91%     |         | 25-135% |
| 877-09-8  | Tetrachloro-m-xylene | 85%     |         | 25-135% |
| 2051-24-3 | Decachlorobiphenyl   | 94%     |         | 10-156% |
| 2051-24-3 | Decachlorobiphenyl   | 78%     |         | 10-156% |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank





## **Report of Analysis**

Page 1 of 3

Client Sample ID: FTFSS-2 Lab Sample ID: JC36373-2 SO - Soil

Matrix: Method:

Project:

SW846 8270D SW846 3546

BMSMC, PR

Date Sampled: 01/25/17

Date Received: 01/27/17

Percent Solids: 89.2

|          | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|----------|-----------|----|----------|----|-----------|------------|------------------|
| Run #1   | 6P34792.D | 1  | 02/08/17 | AC | 01/30/17  | OP173      | E6P1601          |
| Run #2 a | 6P34917.D | 1  | 02/11/17 | AD | 02/10/17  | OP432      | E6P1606          |

|                  | Initial Weight | Final Volume |
|------------------|----------------|--------------|
| Run #1<br>Run #2 | 30.8 g         | 1.0 ml       |
| Run #2           | 30.8 g         | 1.0 ml       |

### **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL | Units | Q |
|-----------|----------------------------|--------|-----|-----|-------|---|
| 95-57-8   | 2-Chlorophenol             | ND     | 73  | 18  | ug/kg |   |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 180 | 22  | ug/kg |   |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 180 | 31  | ug/kg |   |
| 105-67-9  | 2.4-Dimethylphenol         | ND     | 180 | 65  | ug/kg |   |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 180 | 140 | ug/kg |   |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 180 | 39  | ug/kg |   |
| 95-48-7   | 2-Methylphenol             | ND     | 73  | 23  | ug/kg |   |
|           | 3&4-Methylphenol           | ND     | 73  | 30  | ug/kg |   |
| 88-75-5   | 2-Nitrophenol              | ND     | 180 | 24  | ug/kg |   |
| 100-02-7  | 4-Nitrophenol              | ND .   | 360 | 97  | ug/kg |   |
| 87-86-5   | Pentachlorophenol          | ND     | 150 | 34  | ug/kg |   |
| 108-95-2  | Phenol                     | ND     | 73  | 19  | ug/kg |   |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 180 | 24  | ug/kg |   |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 180 | 27  | ug/kg |   |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 180 | 22  | ug/kg |   |
| 83-32-9   | Acenaphthene               | ND     | 36  | 13  | ug/kg |   |
| 208-96-8  | Acenaphthylene             | ND     | 36  | 18  | ug/kg |   |
| 98-86-2   | Acetophenone               | ND     | 180 | 7.8 | ug/kg |   |
| 120-12-7  | Anthracene                 | ND     | 36  | 22  | ug/kg |   |
| 1912-24-9 | Atrazine                   | ND     | 73  | 16  | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene         | 22.5   | 36  | 10  | ug/kg | J |
| 205-99-2  | Benzo(b)fluoranthene       | 31.1   | 36  | 16  | ug/kg | J |
| 191-24-2  | Benzo(g,h,i)perylene       | 18.9   | 36  | 18  | ug/kg | J |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 36  | 17  | ug/kg |   |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 73  | 14  | ug/kg |   |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 73  | 8.9 | ug/kg |   |
| 92-52-4   | 1,1'-Biphenyl              | ND     | 73  | 5.0 | ug/kg |   |
| 100-52-7  | Benzaldehyde               | ND     | 180 | 9.0 | ug/kg |   |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 73  | 8.7 | ug/kg |   |
| 106-47-8  | 4-Chloroaniline            | ND     | 180 | 13  | ug/kg |   |
| 86-74-8   | Carbazole                  | ND     | 73  | 5.3 | ug/kg |   |
| 105-60-2  | Caprolactam                | ND     | 73  | 14  | ug/kg |   |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



tuel Infante Méndez IC # 1888

Client Sample ID: FTFSS-2 Lab Sample ID: JC36373-2 Matrix: SO - Soil

SW846 8270D SW846 3546

Project: BMSMC, PR **Date Sampled:** 01/25/17 Date Received: 01/27/17

Percent Solids: 89.2

### **ABN Special List**

Method:

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q    |     |
|-----------|-----------------------------|--------|--------|------|-------|------|-----|
| 218-01-9  | Chrysene                    | 22.6   | 36     | 11   | ug/kg | J    |     |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 73     | 7.8  | ug/kg |      |     |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 73     | 16   | ug/kg |      |     |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 73     | 13   | ug/kg |      |     |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 73     | 12   | ug/kg |      |     |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 36     | 11   | ug/kg |      |     |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 36     | 18   | ug/kg |      |     |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 73     | 30   | ug/kg |      |     |
| 123-91-1  | 1,4-Dioxane                 | ND     | 36     | 24   | ug/kg |      |     |
| 132-64-9  | Dibenzofuran                | ND     | 73     | 15   | ug/kg |      |     |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 73     | 5.9  | ug/kg |      |     |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 73     | 9.1  | ug/kg |      |     |
| 84-66-2   | Diethyl phthalate           | ND     | 73     | 7.8  | ug/kg |      |     |
| 131-11-3  | Dimethyl phthalate          | ND     | 73     | 6.5  | ug/kg |      |     |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | 53.9   | 73     | 8.5  | ug/kg | J    |     |
| 206-44-0  | Fluoranthene                | 37.0   | 36     | 16   | ug/kg |      |     |
| 86-73-7   | Fluorene                    | ND     | 36     | 17   | ug/kg |      |     |
| 118-74-1  | Hexachlorobenzene           | ND     | 73     | 9.2  | ug/kg |      |     |
| 87-68-3   | Hexachlorobutadiene         | ND     | 36     | 15   | ug/kg |      |     |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 360    | 14   | ug/kg |      |     |
| 67-72-1   | Hexachloroethane            | ND     | 180    | 18   | ug/kg |      |     |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | 21.1   | 36     | 17   | ug/kg | J    |     |
| 78-59-1   | Isophorone                  | ND     | 73     | 7.8  | ug/kg |      |     |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 73     | 7.1  | ug/kg |      |     |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 73     | 8.2  | ug/kg |      |     |
| 88-74-4   | 2-Nitroaniline              | ND     | 180    | 8.6  | ug/kg |      |     |
| 99-09-2   | 3-Nitroaniline              | ND     | 180    | 9.1  | ug/kg |      |     |
| 100-01-6  | 4-Nitroaniline              | ND     | 180    | 9.4  | ug/kg |      |     |
| 91-20-3   | Naphthalene                 | ND     | 36     | 10   | ug/kg |      |     |
| 98-95-3   | Nitrobenzene                | ND     | 73     | 14   | ug/kg |      |     |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 73     | 11   | ug/kg |      |     |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 180    | 13   | ug/kg |      |     |
| 85-01-8   | Phenanthrene                | 17.2   | 36     | 12   | ug/kg | J    |     |
| 129-00-0  | Pyrene                      | 33.8   | 36     | 12   | ug/kg | ال ا | ż   |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 180    | 9.2  | ug/kg | /3   | 1   |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | iits  |      | 100 |
| 367-12-4  | 2-Fluorophenol              | 137% b | 74%    | 23-1 | 115%  | (3)  | 1   |
| 4165-62-2 | Phenol-d5                   | 138% b | 78%    |      | 114%  |      | 1   |
|           |                             |        |        |      |       | /    | 10  |

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound



duel Infante Méndez IC # 1888

Page 3 of 3

Client Sample ID: FTFSS-2 Lab Sample ID:

JC36373-2 SO - Soil

Date Sampled: 01/25/17 Date Received: 01/27/17

Matrix: Method:

SW846 8270D SW846 3546

Percent Solids: 89.2

Project:

BMSMC, PR

### **ABN Special List**

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 168% b | 95%    | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 139% b | 90%    | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 137% b | 85%    | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 141% b | 86%    | 36-134% |

(a) Confirmation run.

(b) Outside in house control limits biased high. The results confirmed by re-extraction outside the holding time.



B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

321-60-8

1718-51-0

# Report of Analysis

Page 1 of 1

Client Sample ID: FTFSS-2 Lab Sample ID: JC36373-2 Matrix:

SO - Soil Method: SW846 8270D BY SIM SW846 3546

Project: BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 89.2

0

File ID **Analytical Batch** DF Prep Date Prep Batch Analyzed By Run #1 4M69660.D E4M3201 1 01/30/17 SG 01/30/17 **OP173A** Run #2

Final Volume Initial Weight Run #1 30.8 g 1.0 ml Run #2

2-Fluorobiphenyl

Terphenyl-d14

CAS No. RL MDL Compound Result Units 50-32-8 19.7 3.6 0.88 Benzo(a)pyrene ug/kg 53-70-3 Dibenzo(a,h)anthracene ND 3.6 0.85 ug/kg CAS No. Run# 2 Surrogate Recoveries Run# 1 Limits 4165-60-0 Nitrobenzene-d5 92% 15-138%

110%

146%



12-148%

10-157%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

# Report of Analysis

Page 1 of 1

Client Sample ID: FTFSS-2 Lab Sample ID: JC36373-2 Matrix: SO - Soil

SW846-8015C (DAI)

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 89.2

Method: Project:

BMSMC, PR

|        | File ID    | DF | Analyzed | Ву  | Prep Date | Prep Batch | Analytical Batch |
|--------|------------|----|----------|-----|-----------|------------|------------------|
| Run #1 | GH108426.D | 1  | 01/30/17 | XPL | n/a       | n/a        | GGH5640          |

Run #2

Initial Weight

Run #1 5.0 g

Run #2

#### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL  | Units | Q |
|----------|----------------------|--------|--------|------|-------|---|
| 64-17-5  | Ethanol              | ND     | 110    | 77   | ug/kg |   |
|          |                      |        |        |      |       |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 110    | 66   | ug/kg |   |
| 67-63-0  | lsopropyl Alcohol    | ND     | 110    | 64   | ug/kg |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 110    | 45   | ug/kg |   |
| 71-36-3  | n-Butyl Alcohol      | ND     | 110    | 61   | ug/kg |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 110    | 60   | ug/kg |   |
| 67-56-1  | Methanol             | ND     | 220    | 54   | ug/kg |   |
| CAC N-   | C                    | D# 1   | D# 2   | T    | ia.   |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | 113   |   |
| 111-27-3 | Hexanol              | 99%    |        | 52-1 | 41%   |   |
| 111-27-3 | Hexanol              | 143% a |        | 52-1 | 41%   |   |
|          |                      |        |        |      |       |   |

(a) High percent recovery and no positive found in sample.



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



| Client Sample ID: | FTFSS-2   |
|-------------------|-----------|
| Lab Sample ID:    | JC36373-2 |
| L                 |           |

Matrix: Method: SO - Soil

SGS Accutest LabLink@946497 13:15 17-Feb-2017

SW846 8081B SW846 3546

10.0 ml

Date Received: 01/27/17

Date Sampled: 01/25/17

Project:

BMSMC, PR

Percent Solids: 89.2

Run #1 Run #2

File 1D 4G77554.D

15.6 g

DF Analyzed 02/01/17

By **Prep Date** KD 01/31/17

Prep Batch OP215

**Analytical Batch** G4G2017

Final Volume Initial Weight

Run #1 Run #2

Pesticide TCL List

| CAS No.    | Compound            | Result | RL   | MDL  | Units |
|------------|---------------------|--------|------|------|-------|
| 309-00-2   | Aldrin              | ND     | 0.72 | 0.34 | ug/kg |
| 319-84-6   | alpha-BHC           | ND     | 0.72 | 0.39 | ug/kg |
| 319-85-7   | beta-BHC            | ND     | 0.72 | 0.45 | ug/kg |
| 319-86-8   | delta-BHC           | ND     | 0.72 | 0.32 | ug/kg |
| 58-89-9    | gamma-BHC (Lindane) | ND     | 0.72 | 0.32 | ug/kg |
| 5103-71-9  | alpha-Chlordane     | ND     | 0.72 | 0.34 | ug/kg |
| 5103-74-2  | gamma-Chlordane     | ND     | 0.72 | 0.32 | ug/kg |
| 60-57-1    | Dieldrin            | ND     | 0.72 | 0.36 | ug/kg |
| 72-54-8    | 4,4'-DDD            | ND     | 0.72 | 0.46 | ug/kg |
| 72-55-9    | 4,4'-DDE            | ND     | 0.72 | 0.37 | ug/kg |
| 50-29-3    | 4,4'-DDT            | ND     | 0.72 | 0.43 | ug/kg |
| 72-20-8    | Endrin              | ND     | 0.72 | 0.34 | ug/kg |
| 1031-07-8  | Endosulfan sulfate  | ND     | 0.72 | 0.29 | ug/kg |
| 7421-93-4  | Endrin aldehyde     | ND     | 0.72 | 0.43 | ug/kg |
| 959-98-8   | Endosulfan-l        | ND     | 0.72 | 0.38 | ug/kg |
| 33213-65-9 | Endosulfan-II       | ND     | 0.72 | 0.38 | ug/kg |
| 76-44-8    | Heptachlor          | ND     | 0.72 | 0.35 | ug/kg |
| 1024-57-3  | Heptachlor epoxide  | ND     | 0.72 | 0.39 | ug/kg |
| 72-43-5    | Methoxychlor        | ND     | 1.4  | 0.36 | ug/kg |
| 53494-70-5 | Endrin ketone       | ND     | 0.72 | 0.55 | ug/kg |
| 8001-35-2  | Toxaphene           | ND     | 18   | 7.5  | ug/kg |

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 877-09-8  | Tetrachloro-m-xylene | 79%    |        | 25-135% |
| 877-09-8  | Tetrachloso-m-xylene | 79%    |        | 25-135% |
| 2051-24-3 | Decachlorobiphenyl   | 94%    |        | 10-156% |
| 2051-24-3 | Decachlorobiphenyl   | 66%    |        | 10-156% |



ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

## Report of Analysis

Page 1 of 3

Client Sample ID: FTFSS-3 Lab Sample ID: JC36373-3 SO - Soil

Matrix: Method:

SW846 8270D SW846 3546

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 94.4

Project: BMSMC, PR

File ID DF Analyzed By Run #1 02/08/17 6P34793.D 1 AC

**Prep Date Prep Batch** 01/30/17 OP173

**Analytical Batch** 

E6P1601

Run #2

Initial Weight

Final Volume

30.5 g 1.0 ml

Run #1 Run #2

#### **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL | Units | Q |
|-----------|----------------------------|--------|-----|-----|-------|---|
| 95-57-8   | 2-Chlorophenol             | ND     | 69  | 17  | ug/kg |   |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 170 | 21  | ug/kg |   |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 170 | 30  | ug/kg |   |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 170 | 62  | ug/kg |   |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 170 | 130 | ug/kg |   |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 170 | 37  | ug/kg |   |
| 95-48-7   | 2-Methylphenol             | ND     | 69  | 22  | ug/kg |   |
|           | 3&4-Methylphenol           | ND     | 69  | 29  | ug/kg |   |
| 88-75-5   | 2-Nitrophenol              | ND     | 170 | 23  | ug/kg |   |
| 100-02-7  | 4-Nitrophenol              | ND     | 350 | 93  | ug/kg |   |
| 87-86-5   | Pentachlorophenol          | ND     | 140 | 33  | ug/kg |   |
| 108-95-2  | Phenol                     | 59.9   | 69  | 18  | ug/kg | J |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 170 | 23  | ug/kg |   |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 170 | 26  | ug/kg |   |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 170 | 21  | ug/kg |   |
| 83-32-9   | Acenaphthene               | ND     | 35  | 12  | ug/kg |   |
| 208-96-8  | Acenaphthylene             | ND     | 35  | 18  | ug/kg |   |
| 98-86-2   | Acetophenone               | ND     | 170 | 7.5 | ug/kg |   |
| 120-12-7  | Anthracene                 | ND     | 35  | 21  | ug/kg |   |
| 1912-24-9 | Atrazine                   | ND     | 69  | 15  | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene         | ND     | 35  | 9.8 | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 35  | 15  | ug/kg |   |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 35  | 17  | ug/kg |   |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 35  | 16  | ug/kg |   |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 69  | 13  | ug/kg |   |
| 85-68-7   | Butyl benzyl phthalate     | 104    | 69  | 8.5 | ug/kg |   |
| 92-52-4   | I, I'-Biphenyl             | ND     | 69  | 4.8 | ug/kg |   |
| 100-52-7  | Benzaldehyde               | 23.5   | 170 | 8.6 | ug/kg | J |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 69  | 8.3 | ug/kg |   |
| 106-47-8  | 4-Chloroaniline            | ND     | 170 | 13  | ug/kg |   |
| 86-74-8   | Carbazole                  | ND     | 69  | 5.0 | ug/kg |   |
| 105-60-2  | Caprolactam                | ND     | 69  | 14  | ug/kg |   |

tael Infante Méndez 1( = 1888

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

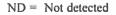


Client Sample ID: FTFSS-3 Lab Sample ID: JC36373-3

Matrix: Method:

Project:

SO - Soil


SW846 8270D SW846 3546 BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 94.4

## **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q                             |
|-----------|-----------------------------|--------|--------|------|-------|-------------------------------|
| 218-01-9  | Chrysene                    | ND     | 35     | 11   | ug/kg |                               |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 69     | 7.4  | ug/kg |                               |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 69     | 15   | ug/kg |                               |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 69     | 12   | ug/kg |                               |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 69     | 11   | ug/kg |                               |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 35     | 11   | ug/kg |                               |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 35     | 17   | ug/kg |                               |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 69     | 29   | ug/kg |                               |
| 123-91-1  | 1,4-Dioxane                 | ND     | 35     | 23   | ug/kg |                               |
| 132-64-9  | Dibenzofuran                | ND     | 69     | 14   | ug/kg |                               |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 69     | 5.7  | ug/kg |                               |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 69     | 8.6  | ug/kg |                               |
| 84-66-2   | Diethyl phthalate           | ND     | 69     | 7.4  | ug/kg |                               |
| 131-11-3  | Dimethyl phthalate          | ND     | 69     | 6.2  | ug/kg |                               |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | 146    | 69     | 8.1  | ug/kg |                               |
| 206-44-0  | Fluoranthene                | ND     | 35     | 15   | ug/kg |                               |
| 86-73-7   | Fluorene                    | ND     | 35     | 16   | ug/kg |                               |
| 118-74-1  | Hexachlorobenzene           | ND     | 69     | 8.8  | ug/kg |                               |
| 87-68-3   | Hexachlorobutadiene         | ND     | 35     | 14   | ug/kg |                               |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 350    | 14   | ug/kg |                               |
| 67-72-1   | Hexachloroethane            | ND     | 170    | 17   | ug/kg |                               |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 35     | 16   | ug/kg |                               |
| 78-59-1   | Isophorone                  | ND     | 69     | 7.4  | ug/kg |                               |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 69     | 6.8  | ug/kg |                               |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 69     | 7.8  | ug/kg |                               |
| 88-74-4   | 2-Nitroaniline              | ND     | 170    | 8.2  | ug/kg |                               |
| 99-09-2   | 3-Nitroaniline              | ND     | 170    | 8.7  | ug/kg |                               |
| 100-01-6  | 4-Nitroaniline              | ND     | 170    | 9.0  | ug/kg |                               |
| 91-20-3   | Naphthalene                 | ND     | 35     | 9.8  | ug/kg |                               |
| 98-95-3   | Nitrobenzene                | ND     | 69     | 13   | ug/kg |                               |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 69     | 10   | ug/kg |                               |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 170    | 13   | ug/kg |                               |
| 85-01-8   | Phenanthrene                | ND     | 35     | 12   | ug/kg | SOCIADO                       |
| 129-00-0  | Pyrene                      | ND     | 35     | 11   | ug/kg | SE MOCHOO OF PER              |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 170    | 8.8  | ug/kg |                               |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   | duel Infante Méndez IC = 1888 |
| 367-12-4  | 2-Fluorophenol              | 61%    |        | 23_1 | 15%   |                               |
| 4165-62-2 | Phenol-d5                   | 60%    |        |      | 14%   | MICO LICENCINGO               |



MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 3 of 3

Client Sample ID: FTFSS-3 Lab Sample ID:

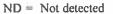
JC36373-3 SO - Soil

Date Sampled: 01/25/17 Date Received: 01/27/17

Matrix: Method:

SW846 8270D SW846 3546

Percent Solids: 94.4


Project:

BMSMC, PR

## **ABN Special List**

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 64%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 60%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 62%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 60%    |        | 36-134% |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



| Client Sample ID: | FTFSS-3   |
|-------------------|-----------|
| Lab Sample ID:    | JC36373-3 |
| Matrix:           | SO - Soil |

Method: Project:

SGS Accutest LabLink@946497 13:15 17-Feb-2017

SW846 8270D BY SIM SW846 3546 BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17 Percent Solids: 94.4

|        | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|--------|-----------|----|----------|----|-----------|------------|------------------|
| Run #1 | 4M69684.D | 1  | 01/31/17 | SG | 01/30/17  | OP173A     | E4M3202          |
| Run #2 |           |    |          |    |           |            |                  |

| Run #1<br>Run #2 | 30.5 g         | 1.0 ml | e      |     |      |       |   |
|------------------|----------------|--------|--------|-----|------|-------|---|
| CAS No.          | Compound       |        | Result | RL  | MDL  | Units | Q |
| 50-32-8          | Benzo(a)pyrene | ;      | ND     | 3.5 | 0.84 | ug/kg |   |

| 53-70-3   | Dibenzo(a,h)anthracene | ND     | 3.5    | 0.81  | ug/kg |
|-----------|------------------------|--------|--------|-------|-------|
| CAS No.   | Surrogate Recoveries   | Run# 1 | Run# 2 | Limi  | its   |
| 4165-60-0 | Nitrobenzene-d5        | 48%    |        | 15-1  | 38%   |
| 321-60-8  | 2-Fluorobiphenyl       | 51%    |        | 12-1- | 48%   |
| 1718-51-0 | Terphenyl-d14          | 67%    |        | 10-1  | 57%   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

Page 1 of 1

Client Sample ID: FTFSS-3 Lab Sample ID: JC36373-3

Matrix: Method:

SO - Soil SW846-8015C (DAI)

Project:

BMSMC, PR

Date Sampled: 01/25/17

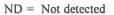
Date Received: 01/27/17

Percent Solids: 94.4

**Analytical Batch** File ID DF Analyzed By **Prep Date** Prep Batch Run #1 GH108427.D 01/30/17 XPL n/a GGH5640 1 n/a

Run #2

**Initial Weight** 


Run #1 5.0 g

Run #2

### Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL   | Units | Q |
|----------|----------------------|--------|--------|-------|-------|---|
| 64-17-5  | Ethanol              | ND     | 110    | 73    | ug/kg |   |
| 78-83-1  | Isobutyl Alcohol     | ND     | 110    | 62    | ug/kg |   |
| 67-63-0  | Isopropyl Alcohol    | ND     | 110    | 60    | ug/kg |   |
| 71-23-8  | n-Propyl Alcohol     | ND     | 110    | 43    | ug/kg |   |
| 71-36-3  | n-Butyl Alcohoi      | ND     | 110    | 58    | ug/kg |   |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 110    | 56    | ug/kg |   |
| 67-56-1  | Methanol             | ND     | 210    | 51    | ug/kg |   |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Limi  | ts    |   |
| 111-27-3 | Hexanol              | 101%   |        | 52-14 | 11%   |   |
| 111-27-3 | Hexanol              | 96%    |        | 52-14 | 11%   |   |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID: FTFSS-3 Lab Sample ID:

JC36373-3

SO - Soil SW846 8081B SW846 3546

> Analyzed 02/01/17

Date Sampled: 01/25/17 Date Received: 01/27/17

Matrix: Method: Project:

BMSMC, PR

Percent Solids: 94.4

File ID

DF 4G77555.D 1

By **Prep Date** KD 01/31/17

Prep Batch OP215

**Analytical Batch** G4G2017

Run #1 Run #2

> Initial Weight 15.2 g

Final Volume 10.0 ml

Run #1 Run #2

#### Pesticide TCL List

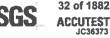
| CAS No.    | Compound            | Result | RL   | MDL  | Units | Q |
|------------|---------------------|--------|------|------|-------|---|
| 309-00-2   | Aldrin              | ND     | 0.70 | 0.33 | ug/kg |   |
| 319-84-6   | alpha-BHC           | ND     | 0.70 | 0.37 | ug/kg |   |
| 319-85-7   | beta-BHC            | ND     | 0.70 | 0.44 | ug/kg |   |
| 319-86-8   | delta-BHC           | ND     | 0.70 | 0.32 | ug/kg |   |
| 58-89-9    | gamma-BHC (Lindane) | ND     | 0.70 | 0.31 | ug/kg |   |
| 5103-71-9  | alpha-Chlordane     | ND     | 0.70 | 0.33 | ug/kg |   |
| 5103-74-2  | gamma-Chlordane     | ND     | 0.70 | 0.31 | ug/kg |   |
| 60-57-1    | Dieldrin            | ND     | 0.70 | 0.35 | ug/kg |   |
| 72-54-8    | 4,4'-DDD            | ND     | 0.70 | 0.45 | ug/kg |   |
| 72-55-9    | 4,4'-DDE            | ND     | 0.70 | 0.36 | ug/kg |   |
| 50-29-3    | 4,4'-DDT            | ND     | 0.70 | 0.41 | ug/kg |   |
| 72-20-8    | Endrin              | ND     | 0.70 | 0.33 | ug/kg |   |
| 1031-07-8  | Endosulfan sulfate  | ND     | 0.70 | 0.28 | ug/kg |   |
| 7421-93-4  | Endrin aldehyde     | ND     | 0.70 | 0.41 | ug/kg |   |
| 959-98-8   | Endosulfan-I        | ND     | 0.70 | 0.36 | ug/kg |   |
| 33213-65-9 | Endosulfan-II       | ND     | 0.70 | 0.36 | ug/kg |   |
| 76-44-8    | Heptachlor a        | 0.69   | 0.70 | 0.34 | ug/kg | J |
| 1024-57-3  | Heptachlor epoxide  | ND     | 0.70 | 0.37 | ug/kg |   |
| 72-43-5    | Methoxychlor        | ND     | 1.4  | 0.35 | ug/kg |   |
| 53494-70-5 | Endrin ketone       | ND     | 0.70 | 0.54 | ug/kg |   |
| 8001-35-2  | Toxaphene           | ND     | 17   | 7.2  | ug/kg |   |
|            |                     |        |      |      |       |   |

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 877-09-8  | Tetrachloro-m-xylene | 88%    |        | 24-136% |
| 877-09-8  | Tetrachloro-m-xylene | 83%    |        | 24-136% |
| 2051-24-3 | Decachlorobiphenyl   | 114%   |        | 10-153% |
| 2051-24-3 | Decachlorobiphenyl   | 81%    |        | 10-153% |

(a) More than 40 % RPD for detected concentrations between the two GC columns.



ND = Not detected


MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range



## Report of Analysis

Page 1 of 3

Client Sample ID: BRSS-1

Lab Sample ID: JC36373-4 Matrix: SO - Soil

Method: SW846 8270D SW846 3546

Project: BMSMC, PR Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 88.1

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** 6P34788.D 01/30/17 OP173 E6P1601 Run #1 L 02/08/17 AC

Run #2

Initial Weight Final Volume

Run #1 30.8 g 1.0 ml

Run #2

## **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL | Units | Q |
|-----------|----------------------------|--------|-----|-----|-------|---|
| 95-57-8   | 2-Chlorophenol             | ND     | 74  | 18  | ug/kg |   |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 180 | 23  | ug/kg |   |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 180 | 31  | ug/kg |   |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 180 | 66  | ug/kg |   |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 180 | 140 | ug/kg |   |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 180 | 39  | ug/kg |   |
| 95-48-7   | 2-Methylphenol             | ND     | 74  | 24  | ug/kg |   |
|           | 3&4-Methylphenol           | ND     | 74  | 30  | ug/kg |   |
| 88-75-5   | 2-Nitrophenol              | ND     | 180 | 24  | ug/kg |   |
| 100-02-7  | 4-Nitrophenol              | ND     | 370 | 98  | ug/kg |   |
| 87-86-5   | Pentachlorophenol          | ND     | 150 | 35  | ug/kg |   |
| 108-95-2  | Phenol                     | ND     | 74  | 19  | ug/kg |   |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 180 | 24  | ug/kg |   |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 180 | 28  | ug/kg |   |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 180 | 22  | ug/kg |   |
| 83-32-9   | Acenaphthene               | ND     | 37  | 13  | ug/kg |   |
| 208-96-8  | Acenaphthylene             | ND     | 37  | 19  | ug/kg |   |
| 98-86-2   | Acetophenone               | ND     | 180 | 7.9 | ug/kg |   |
| 120-12-7  | Anthracene                 | ND     | 37  | 23  | ug/kg |   |
| 1912-24-9 | Atrazine                   | ND     | 74  | 16  | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene         | ND     | 37  | 10  | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 37  | 16  | ug/kg |   |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 37  | 18  | ug/kg |   |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 37  | 17  | ug/kg |   |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 74  | 14  | ug/kg |   |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 74  | 9.0 | ug/kg |   |
| 92-52-4   | 1, l'-Biphenyl             | ND     | 74  | 5.0 | ug/kg |   |
| 100-52-7  | Benzaldehyde               | 26.0   | 180 | 9.1 | ug/kg | J |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 74  | 8.8 | ug/kg |   |
| 106-47-8  | 4-Chloroaniline            | ND     | 180 | 13  | ug/kg |   |
| 86-74-8   | Carbazole                  | ND     | 74  | 5.3 | ug/kg |   |
| 105-60-2  | Caprolactam                | ND     | 74  | 15  | ug/kg |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: BRSS-1 Lab Sample ID: JC36373-4

Matrix: Method: SO - Soil

Date Received: 01/27/17

Date Sampled: 01/25/17

SW846 8270D SW846 3546

Percent Solids: 88.1

Project: BMSMC, PR

## **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q                             |
|-----------|-----------------------------|--------|--------|------|-------|-------------------------------|
| 218-01-9  | Chrysene                    | ND     | 37     | 12   | ug/kg |                               |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 74     | 7.9  | ug/kg |                               |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 74     | 16   | ug/kg |                               |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 74     | 13   | ug/kg |                               |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 74     | 12   | ug/kg |                               |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 37     | 11   | ug/kg |                               |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 37     | 19   | ug/kg |                               |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | . 74   | 31   | ug/kg |                               |
| 123-91-1  | 1,4-Dioxane                 | ND     | 37     | 24   | ug/kg |                               |
| 132-64-9  | Dibenzofuran                | ND     | 74     | 15   | ug/kg |                               |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 74     | 6.0  | ug/kg |                               |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 74     | 9.2  | ug/kg |                               |
| 84-66-2   | Diethyl phthalate           | ND     | 74     | 7.8  | ug/kg |                               |
| 131-11-3  | Dimethyl phthalate          | ND     | 74     | 6.6  | ug/kg |                               |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 74     | 8.6  | ug/kg |                               |
| 206-44-0  | Fluoranthene                | ND     | 37     | 16   | ug/kg |                               |
| 86-73-7   | Fluorene                    | ND     | 37     | 17   | ug/kg |                               |
| 118-74-1  | Hexachlorobenzene           | ND     | 74     | 9.3  | ug/kg |                               |
| 87-68-3   | Hexachlorobutadiene         | ND     | 37     | 15   | ug/kg |                               |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 370    | 15   | ug/kg |                               |
| 67-72-1   | Hexachloroethane            | ND     | 180    | 18   | ug/kg |                               |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 37     | 17   | ug/kg |                               |
| 78-59-1   | Isophorone                  | ND     | 74     | 7.9  | ug/kg |                               |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 74     | 7.2  | ug/kg |                               |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 74     | 8.3  | ug/kg |                               |
| 88-74-4   | 2-Nitroaniline              | ND     | 180    | 8.7  | ug/kg |                               |
| 99-09-2   | 3-Nitroaniline              | ND     | 180    | 9.2  | ug/kg |                               |
| 100-01-6  | 4-Nitroaniline              | ND     | 180    | 9.5  | ug/kg |                               |
| 91-20-3   | Naphthalene                 | ND     | 37     | 10   | ug/kg |                               |
| 98-95-3   | Nitrobenzene                | ND     | 74     | 14   | ug/kg |                               |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 74     | 11   | ug/kg |                               |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 180    | 13   | ug/kg | SOCIADO DA                    |
| 85-01-8   | Phenanthrene                | ND     | 37     | 12   | ug/kg | At Market                     |
| 129-00-0  | Pyrene                      | ND     | 37     | 12   | ug/kg | 186                           |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 180    | 9.4  | ug/kg | tael Infante (2)              |
|           |                             |        |        |      |       | Méndez   5                    |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   | tuel Infante Mendez IC = 1888 |
| 367-12-4  | 2-Fluorophenol              | 63%    |        | 23-1 | 15%   | The state of                  |
| 4165-62-2 | Phenol-d5                   | 63%    |        |      | 14%   | LINICO LICENCIADO             |



MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 3 of 3

Client Sample ID: BRSS-1

Lab Sample ID: JC36373-4
Matrix: SO - Soil

Method: SW846 8270D SW846 3546

Project: BMSMC, PR

**Date Sampled:** 01/25/17 **Date Received:** 01/27/17

Percent Solids: 88.1

## **ABN Special List**

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 77%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 62%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 67%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 68%    |        | 36-134% |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



## Report of Analysis

Ву

SG

Page 1 of 1

Client Sample ID: BRSS-1

Lab Sample ID: Matrix:

JC36373-4 SO - Soil

SW846 8270D BY SIM SW846 3546

Prep Date

01/30/17

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 88.1

**OP173A** 

Method: Project:

BMSMC, PR

Analyzed

01/31/17

Prep Batch **Analytical Batch** E4M3202

Run #1 Run #2

Initial Weight

4M69685.D

File ID

Final Volume 1.0 ml

DF

1

Run #1 30.8 g

Run #2

| CAS No.            | Compound       | Result     | RL  | MDL  | Units | Q |
|--------------------|----------------|------------|-----|------|-------|---|
| 50-32-8<br>53-70-3 | Benzo(a)pyrene | 4.69<br>ND | 3.7 | 0.90 | ug/kg |   |

|           |                      |        | _      |         |
|-----------|----------------------|--------|--------|---------|
| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
| 4165-60-0 | Nitrobenzene-d5      | 55%    |        | 15-138% |
| 321-60-8  | 2-Fluorobiphenyl     | 61%    |        | 12-148% |
| 1718-51-0 | Terphenyl-d14        | 90%    |        | 10-157% |



ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

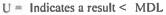
Client Sample ID: BRSS-1 Lab Sample ID: JC36373-4 Matrix: SO - Soil

Date Sampled: 01/25/17
Date Received: 01/27/17
Percent Solids: 88.1

Project:

BMSMC, PR

### Metals Analysis


| Analyte   | Result | RL    | MDL    | Units | DF | Prep     | Analyzed | Ву | Method                   | Prep Method              |
|-----------|--------|-------|--------|-------|----|----------|----------|----|--------------------------|--------------------------|
| Aluminum  | 11900  | 57    | 2.2    | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Antimony  | 0.42 B | 2.3   | 0.33   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Arsenic   | 5.3    | 2.3   | 0.24   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Barium    | 92.9   | 23    | 0.092  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Beryllium | 0.25   | 0.23  | 0.025  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Cadmium   | 0.66   | 0.57  | 0.057  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Calcium   | 2200   | 570   | 2.1    | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Chromium  | 9.6    | 1.1   | 0.13   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Cobalt    | 5.6 B  | 5.7   | 0.067  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Copper    | 20.0   | 2.8   | 0.25   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Iron      | 16000  | 57    | 0.90   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Lead      | 13.2   | 2.3   | 0.25   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Magnesium | 1410   | 570   | 6.7    | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Manganese | 432    | 1.7   | 0.041  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Mercury   | 0.14   | 0.037 | 0.0059 | mg/kg | 1  | 02/01/17 | 02/01/17 | JA | SW846 7471B <sup>1</sup> | SW846 7471B <sup>3</sup> |
| Nickel    | 3.7 B  | 4.5   | 0.086  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Potassium | 735 B  | 1100  | 21     | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Selenium  | 0.53 U | 2.3   | 0.53   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Silver    | 0.31 B | 0.57  | 0.11   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Sodium    | 73.3 B | 1100  | 4.4    | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Thallium  | 0.45 U | 1.1   | 0.45   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Vanadium  | 44.8   | 5.7   | 0.094  | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Zinc      | 121    | 5.7   | 0.25   | mg/kg | 1  | 02/01/17 | 02/02/17 | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |

(1) Instrument QC Batch: MA41277(2) Instrument QC Batch: MA41292(3) Prep QC Batch: MP98464(4) Prep QC Batch: MP98471





MDL = Method Detection Limit



B = Indicates a result > = MDL but < RL



## Report of Analysis

Ву

AC

Analyzed

02/08/17

Page 1 of 3

Client Sample ID: BRSS-1 DUP Lab Sample ID:

File ID

30.3 g

Matrix: Method: JC36373-5 SO - Soil

SW846 8270D SW846 3546

DF

1

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 88.2

Prep Batch

OP173

Project:

BMSMC, PR

Prep Date

01/30/17

**Analytical Batch** E6P1601

Run #1 Run #2

Initial Weight

6P34789.D

Final Volume

1.0 ml

Run #1 Run #2

## **ABN Special List**

| CAS No.    | Compound                   | Result       | RL  | MDL        | Units       | Q                               |
|------------|----------------------------|--------------|-----|------------|-------------|---------------------------------|
| 95-57-8    | 2-Chlorophenol             | ND           | 75  | 18         | ug/kg       |                                 |
| 59-50-7    | 4-Chloro-3-methyl phenol   | ND           | 190 | 23         | ug/kg       |                                 |
| 120-83-2   | 2,4-Dichlorophenol         | ND           | 190 | 32         | ug/kg       |                                 |
| 105-67-9   | 2,4-Dimethylphenol         | ND           | 190 | 67         | ug/kg       |                                 |
| 51-28-5    | 2,4-Dinitrophenol          | ND           | 190 | 140        | ug/kg       |                                 |
| 534-52-1   | 4,6-Dinitro-o-cresol       | ND           | 190 | 40         | ug/kg       |                                 |
| 95-48-7    | 2-Methylphenol             | ND           | 75  | 24         | ug/kg       |                                 |
|            | 3&4-Methylphenol           | ND           | 75  | 31         | ug/kg       |                                 |
| 88-75-5    | 2-Nitrophenol              | ND           | 190 | 25         | ug/kg       |                                 |
| 100-02-7   | 4-Nitrophenol              | ND           | 370 | 100        | ug/kg       |                                 |
| 87-86-5    | Pentachlorophenol          | ND           | 150 | 35         | ug/kg       |                                 |
| 108-95-2   | Phenol                     | ND           | 75  | 20         | ug/kg       |                                 |
| 58-90-2    | 2,3,4,6-Tetrachlorophenol  | ND           | 190 | 25         | ug/kg       |                                 |
| 95-95-4    | 2,4,5-Trichlorophenol      | ND           | 190 | 28         | ug/kg       |                                 |
| 88-06-2    | 2,4,6-Trichlorophenol      | ND           | 190 | 22         | ug/kg       |                                 |
| 83-32-9    | Acenaphthene               | ND           | 37  | 13         | ug/kg       |                                 |
| 208-96-8   | Acenaphthylene             | ND           | 37  | 19         | ug/kg       |                                 |
| 98-86-2    | Acetophenone               | ND           | 190 | 8.0        | ug/kg       |                                 |
| 120-12-7   | Anthracene                 | ND           | 37  | 23         | ug/kg       |                                 |
| 1912-24-9  | Atrazine                   | ND           | 75  | 16         | ug/kg       |                                 |
| 56-55-3    | Benzo(a)anthracene         | ND           | 37  | 11         | ug/kg       |                                 |
| 205-99-2   | Benzo(b)fluoranthene       | ND           | 37  | 17         | ug/kg       |                                 |
| 191-24-2   | Benzo(g,h,i)perylene       | ND           | 37  | 19         | ug/kg       |                                 |
| 207-08-9   | Benzo(k)fluoranthene       | ND           | 37  | 17         | ug/kg       |                                 |
| 101-55-3   | 4-Bromophenyl phenyl ether | ND           | 75  | 14         | ug/kg       | 001100                          |
| 85-68-7    | Butyl benzyl phthalate     | ND           | 75  | 9.1        | ug/kg       | SOUNDO DE                       |
| 92-52-4    | 1, 1'-Biphenyl             | ND           | 75  | 5.1        | ug/kg       | J fuel Infante Mendez IC = 1888 |
| 100-52-7   | Benzaldehyde               | 41.8         | 190 | 9.3        | ug/kg       | J July Infonte                  |
| 91-58-7    | 2-Chloronaphthalene        | ND           | 75  | 8.9        | ug/kg       | Minder 2                        |
| 106-47-8   | 4-Chloroaniline            | ND           | 190 | 13         | ug/kg       | 1/ # 1888  S                    |
| 86-74-8    | Carbazole                  | ND           | 75  | 5.4        | ug/kg       | K - 1000                        |
| 105-60-2   | Caprolactam                | ND           | 75  | 15         | ug/kg       | imated value                    |
| ND = Not o | detected MDL = Method I    | Detection Li | mit | J = Indica | tes an esti | imated value                    |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: BRSS-1 DUP Lab Sample ID: JC36373-5

Matrix: SO - Soil Method: SW846 8270D SW846 3546

Project: BMSMC, PR Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 88.2

### **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q                   |
|-----------|-----------------------------|--------|--------|------|-------|---------------------|
| 218-01-9  | Chrysene                    | ND     | 37     | 12   | ug/kg |                     |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 75     | 8.0  | ug/kg |                     |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 75     | 16   | ug/kg |                     |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 75     | 13   | ug/kg |                     |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 75     | 12   | ug/kg |                     |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 37     | 12   | ug/kg |                     |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 37     | 19   | ug/kg |                     |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 75     | 31   | ug/kg |                     |
| 123-91-1  | 1,4-Dioxane                 | ND     | 37     | 25   | ug/kg |                     |
| 132-64-9  | Dibenzofuran                | ND     | 75     | 15   | ug/kg |                     |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 75     | 6.1  | ug/kg |                     |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 75     | 9.3  | ug/kg |                     |
| 84-66-2   | Diethyl phthalate           | ND     | 75     | 8.0  | ug/kg |                     |
| 131-11-3  | Dimethyl phthalate          | ND     | 75     | 6.7  | ug/kg |                     |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 75     | 8.8  | ug/kg |                     |
| 206-44-0  | Fluoranthene                | ND     | 37     | 17   | ug/kg |                     |
| 86-73-7   | Fluorene                    | ND     | 37     | 17   | ug/kg |                     |
| 118-74-1  | Hexachlorobenzene           | ND     | 75     | 9.5  | ug/kg |                     |
| 87-68-3   | Hexachlorobutadiene         | ND     | 37     | 15   | ug/kg |                     |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 370    | 15   | ug/kg |                     |
| 67-72-1   | Hexachloroethane            | ND     | 190    | 19   | ug/kg |                     |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 37     | 18   | ug/kg |                     |
| 78-59-1   | Isophorone                  | ND     | 75     | 8.0  | ug/kg |                     |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 75     | 7.3  | ug/kg |                     |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 75     | 8.5  | ug/kg |                     |
| 88-74-4   | 2-Nitroaniline              | ND     | 190    | 8.8  | ug/kg |                     |
| 99-09-2   | 3-Nitroaniline              | ND     | 190    | 9.4  | ug/kg |                     |
| 100-01-6  | 4-Nitroaniline              | ND     | 190    | 9.7  | ug/kg |                     |
| 91-20-3   | Naphthalene                 | ND     | 37     | 11   | ug/kg |                     |
| 98-95-3   | Nitrobenzene                | ND     | 75     | 14   | ug/kg |                     |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 75     | 11   | ug/kg |                     |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 190    | 14   | ug/kg | COCUDO              |
| 85-01-8   | Phenanthrene                | ND     | 37     | 13   | ug/kg | STANDOUTE.          |
| 129-00-0  | Pyrene                      | ND     | 37     | 12   | ug/kg | 18                  |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 190    | 9.5  | ug/kg | fuel Infante        |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   | Méndez<br>10 = 1888 |
|           |                             | m10/   |        |      |       | 1                   |
| 367-12-4  | 2-Fluorophenol              | 71%    |        | 23-1 |       | Was such            |
| 4165-62-2 | Phenol-d5                   | 73%    |        | 27-1 | 14%   | MICO LICENCY        |

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound



Page 3 of 3

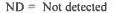
Client Sample ID: BRSS-1 DUP Lab Sample ID: JC36373-5 Matrix:

SO - Soil

SW846 8270D SW846 3546 BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 88.2


## **ABN Special List**

Method:

Project:

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 86%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 74%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 75%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 77%    |        | 36-134% |





MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

# Report of Analysis

Page 1 of 1

Client Sample ID: BRSS-1 DUP JC36373-5 Lab Sample ID:

Matrix: Method: SO - Soil SW846 8270D BY SIM SW846 3546

DF

1

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 88.2

Project: BMSMC, PR

File ID Run #1 4M69663.D Run #2

Analyzed 01/30/17

By SG

Prep Date Prep Batch 01/30/17

**OP173A** 

**Analytical Batch** E4M3201

**Initial Weight Final Volume** Run #1 30.3 g 1.0 ml

Run #2

50-32-8

53-70-3

CAS No. Compound

Benzo(a)pyrene

Dibenzo(a,h)anthracene

Result 4.17 ND

3.7 0.91 3.7 0.87

Run# 2

RL

MDL

ug/kg ug/kg

Units

Q

CAS No. Surrogate Recoveries

4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 1718-51-0 Terphenyl-d14

50% 55% 84%

Run# 1

15-138% 12-148% 10-157%

Limits



ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: BRSS-1 DUP Lab Sample ID: JC36373-5 Matrix: SO - Soil

Date Sampled: 01/25/17 Date Received: 01/27/17 Percent Solids: 88.2

Project:

BMSMC, PR

### Metals Analysis

| Analyte   | Result | RL    | MDL    | Units | DF | Prep     | Analyzed I | Ву | Method                   | Prep Method              |
|-----------|--------|-------|--------|-------|----|----------|------------|----|--------------------------|--------------------------|
| Aluminum  | 13000  | 54    | 2.1    | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Antimony  | 0.32 U | 2.2   | 0.32   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B 4            |
| Arsenic   | 5.4    | 2.2   | 0.23   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B 4            |
| Barium    | 107    | 22    | 0.087  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B 4            |
| Beryllium | 0.25   | 0.22  | 0.024  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B 4            |
| Cadmium   | 0.73   | 0.54  | 0.054  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B 4            |
| Calcium   | 2500   | 540   | 2.0    | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Chromium  | 16.4   | 1.1   | 0.13   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Cobalt    | 6.5    | 5.4   | 0.064  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Copper    | 22.3   | 2.7   | 0.23   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Iron      | 18100  | 54    | 0.86   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Lead      | 14.2   | 2.2   | 0.24   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Magnesium | 1710   | 540   | 6.3    | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Manganese | 512    | 1.6   | 0.039  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ΝD | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Mercury   | 0.33   | 0.036 | 0.0057 | mg/kg | 1  | 02/01/17 | 02/01/17 J | ΙA | SW846 7471B <sup>1</sup> | SW846 7471B <sup>3</sup> |
| Nickel    | 8.0    | 4.3   | 0.082  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Potassium | 891 B  | 1100  | 20     | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Selenium  | 0.63 B | 2.2   | 0.50   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Silver    | 0.26 B | 0.54  | 0.11   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ΝD | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Sodium    | 83.8 B | 1100  | 4.2    | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Thallium  | 0.45 B | 1.1   | 0.43   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Vanadium  | 52.0   | 5.4   | 0.090  | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Zinc      | 129    | 5.4   | 0.24   | mg/kg | 1  | 02/01/17 | 02/02/17 N | ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |

(1) Instrument QC Batch: MA41277(2) Instrument QC Batch: MA41292(3) Prep QC Batch: MP98464(4) Prep QC Batch: MP98471



## Report of Analysis

Page 1 of 3

Client Sample ID: BRSS-2

Lab Sample ID:

JC36373-6

Matrix: Method: SO - Soil

SW846 8270D SW846 3546

Date Received: 01/27/17

Date Sampled: 01/25/17

Percent Solids: 79.1

Project:

BMSMC, PR

File ID DF

By Analyzed 02/08/17 AC Prep Date 01/30/17

Prep Batch OP173

**Analytical Batch** E6P1601

Run #1 Run #2

Run #2

Initial Weight

6P34794.D

Final Volume

Run #1 30.4 g

1.0 ml

1

## **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL | Units | Q |
|-----------|----------------------------|--------|-----|-----|-------|---|
| 95-57-8   | 2-Chlorophenol             | ND     | 83  | 21  | ug/kg |   |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 210 | 25  | ug/kg |   |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 210 | 35  | ug/kg |   |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 210 | 74  | ug/kg |   |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 210 | 160 | ug/kg |   |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 210 | 44  | ug/kg |   |
| 95-48-7   | 2-Methylphenol             | ND     | 83  | 27  | ug/kg |   |
|           | 3&4-Methylphenol           | ND     | 83  | 34  | ug/kg |   |
| 88-75-5   | 2-Nitrophenol              | ND     | 210 | 27  | ug/kg |   |
| 100-02-7  | 4-Nitrophenol              | ND     | 420 | 110 | ug/kg |   |
| 87-86-5   | Pentachlorophenol          | ND     | 170 | 39  | ug/kg |   |
| 108-95-2  | Phenol                     | ND     | 83  | 22  | ug/kg |   |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 210 | 28  | ug/kg |   |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 210 | 31  | ug/kg |   |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 210 | 25  | ug/kg |   |
| 83-32-9   | Acenaphthene               | ND     | 42  | 14  | ug/kg |   |
| 208-96-8  | Acenaphthylene             | ND     | 42  | 21  | ug/kg |   |
| 98-86-2   | Acetophenone               | ND     | 210 | 8.9 | ug/kg |   |
| 120-12-7  | Anthracene                 | ND     | 42  | 25  | ug/kg |   |
| 1912-24-9 | Atrazine                   | ND     | 83  | 18  | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene         | ND     | 42  | 12  | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 42  | 18  | ug/kg |   |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 42  | 21  | ug/kg |   |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 42  | 19  | ug/kg |   |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 83  | 16  | ug/kg |   |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 83  | 10  | ug/kg |   |
| 92-52-4   | 1, 1'-Biphenyl             | ND     | 83  | 5.7 | ug/kg |   |
| 100-52-7  | Benzaldehyde               | 39.1   | 210 | 10  | ug/kg | J |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 83  | 9.9 | ug/kg |   |
| 106-47-8  | 4-Chloroaniline            | ND     | 210 | 15  | ug/kg |   |
| 86-74-8   | Carbazole                  | ND     | 83  | 6.0 | ug/kg |   |
| 105-60-2  | Caprolactam                | ND     | 83  | 16  | ug/kg |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

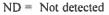
B = Indicates analyte found in associated method blank



Client Sample ID: BRSS-2 Lab Sample ID: JC36373-6

Matrix: SO - Soil

Method: Project: BMSMC, PR


SW846 8270D SW846 3546

**Date Sampled:** 01/25/17 Date Received: 01/27/17

Percent Solids: 79.1

## **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL                   | Units | Q                     |
|-----------|-----------------------------|--------|--------|-----------------------|-------|-----------------------|
| 218-01-9  | Chrysene                    | ND     | 42     | 13                    | ug/kg |                       |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 83     | 8.9                   | ug/kg |                       |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 83     | 18                    | ug/kg |                       |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 83     | 15                    | ug/kg |                       |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 83     | 13                    | ug/kg |                       |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 42     | 13                    | ug/kg |                       |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 42     | 21                    | ug/kg |                       |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 83     | 35                    | ug/kg |                       |
| 123-91-1  | 1,4-Dioxane                 | ND     | 42     | 27                    | ug/kg |                       |
| 132-64-9  | Dibenzofuran                | ND     | 83     | 17                    | ug/kg |                       |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 83     | 6.8                   | ug/kg |                       |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 83     | 10                    | ug/kg |                       |
| 84-66-2   | Diethyl phthalate           | ND     | 83     | 8.9                   | ug/kg |                       |
| 131-11-3  | Dimethyl phthalate          | ND     | 83     | 7.4                   | ug/kg |                       |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 83     | 9.7                   | ug/kg |                       |
| 206-44-0  | Fluoranthene                | ND     | 42     | 19                    | ug/kg |                       |
| 86-73-7   | Fluorene                    | ND     | 42     | 19                    | ug/kg |                       |
| 118-74-1  | Hexachlorobenzene           | ND     | 83     | 11                    | ug/kg |                       |
| 87-68-3   | Hexachlorobutadiene         | ND     | 42     | 17                    | ug/kg |                       |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 420    | 17                    | ug/kg |                       |
| 67-72-1   | Hexachloroethane            | ND     | 210    | 21                    | ug/kg |                       |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 42     | 20                    | ug/kg |                       |
| 78-59-1   | Isophorone                  | ND     | 83     | 8.9                   | ug/kg |                       |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 83     | 8.2                   | ug/kg |                       |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 83     | 9.4                   | ug/kg |                       |
| 88-74-4   | 2-Nitroaniline              | ND     | 210    | 9.8                   | ug/kg |                       |
| 99-09-2   | 3-Nitroaniline              | ND     | 210    | 10                    | ug/kg |                       |
| 100-01-6  | 4-Nitroaniline              | ND     | 210    | 11                    | ug/kg |                       |
| 91-20-3   | Naphthalene                 | ND     | 42     | 12                    | ug/kg |                       |
| 98-95-3   | Nitrobenzene                | ND     | 83     | 16                    | ug/kg |                       |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 83     | 12                    | ug/kg |                       |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 210    | 15                    | ug/kg |                       |
| 85-01-8   | Phenanthrene                | ND     | 42     | 14                    | ug/kg | L NOCHOO DE           |
| 129-00-0  | Pyrene                      | ND     | 42     | 13                    | ug/kg | Ser.                  |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 210    | 11                    | ug/kg | art 1800WOO OF STREET |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | <sup>‡</sup> 2 Limits |       | Viendez               |
| 367-12-4  | 2-Fluorophenol              | 62%    |        | 23-1                  | 15%   | 100                   |
| 4165-62-2 | Phenol-d5                   | 59%    |        |                       | 14%   | MICO LICENCIADO       |



MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: BRSS-2

Lab Sample ID: Matrix:

Method:

Project:

JC36373-6 SO - Soil

SW846 8270D SW846 3546 BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 79.1

## **ABN Special List**

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 68%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 65%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 62%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 57%    |        | 36-134% |



B = Indicates analyte found in associated method blank

# Report of Analysis

Page 1 of 1

| Client Sample ID:         | BRSS-2    |
|---------------------------|-----------|
| Lab Sample ID:<br>Matrix: | JC36373-6 |
| Matrix:                   | SO - Soil |

Method: SW846 8270D BY SIM SW846 3546 Date Sampled: 01/25/17 Date Received: 01/27/17 Percent Solids: 79.1

Q

10-157%

Project: BMSMC, PR

Terphenyl-d14

File ID DF Analyzed Ву **Prep Date Prep Batch Analytical Batch** Run #1 4M69664.D į 01/30/17 SG 01/30/17 **OP173A** E4M3201

Run #2

1718-51-0

|        | Initial Weight | Final Volume | <del></del> |
|--------|----------------|--------------|-------------|
| Run #1 | 30.4 g         | 1.0 ml       |             |
| Run #2 | •              |              |             |

| CAS No.               | Compound                                 | Result     | RL          | MDL         | Units          |
|-----------------------|------------------------------------------|------------|-------------|-------------|----------------|
| 50-32-8<br>53-70-3    | Benzo(a)pyrene<br>Dibenzo(a,h)anthracene | 7.74<br>ND | 4.2<br>4.2  | 1.0<br>0.97 | ug/kg<br>ug/kg |
| CAS No.               | Surrogate Recoveries                     | Run# I     | Run# 2 Limi |             | its            |
| 4165-60-0<br>321-60-8 | Nitrobenzene-d5<br>2-Fluorobiphenyl      | 42%<br>43% |             |             | 38%<br>48%     |

59%



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: BRSS-2 Lab Sample ID: JC36373-6 Matrix: SO - Soil

Date Sampled: 01/25/17 Date Received: 01/27/17 Percent Solids: 79.1

Project:

BMSMC, PR

## **Metals Analysis**

| Analyte   | Result | RL    | MDL    | Units | DF | Prep     | Analyzed By | Method                   | Prep Method              |
|-----------|--------|-------|--------|-------|----|----------|-------------|--------------------------|--------------------------|
| Aluminum  | 22700  | 61    | 2.4    | mg/kg | 1  | 02/01/17 | 02/02/17 NE | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Antimony  | 0.36 U | 2.5   | 0.36   | mg/kg | Ī  | 02/01/17 | 02/02/17 NE | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Arsenic   | 5.2    | 2.5   | 0.26   | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Barium    | 116    | 25    | 0.099  | mg/kg | 1  | 02/01/17 | 02/02/17 NE | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Beryllium | 0.25   | 0.25  | 0.027  | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Cadmium   | 0.29 B | 0.61  | 0.061  | mg/kg | 1  | 02/01/17 | 02/02/17 NE | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Calcium   | 4130   | 610   | 2.3    | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Chromium  | 16.1   | 1.2   | 0.14   | mg/kg | 1  | 02/01/17 | 02/02/17 NE | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Cobalt    | 11.5   | 6.1   | 0.072  | mg/kg | 1  | 02/01/17 | 02/02/17 NE | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Copper    | 48.8   | 3.1   | 0.27   | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Iron      | 25500  | 61    | 0.97   | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Lead      | 8.8    | 2.5   | 0.27   | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Magnesium | 3110   | 610   | 7.2    | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Manganese | 625    | 1.8   | 0.044  | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Mercury   | 0.037  | 0.033 | 0.0053 | mg/kg | 1  | 02/01/17 | 02/01/17 JA | SW846 7471B <sup>l</sup> | SW846 7471B <sup>3</sup> |
| Nickel    | 6.9    | 4.9   | 0.093  | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Potassium | 665 B  | 1200  | 23     | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Selenium  | 0.75 B | 2.5   | 0.57   | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Silver    | 0.52 B | 0.61  | 0.12   | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Sodium    | 206 B  | 1200  | 4.8    | mg/kg | 1  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Thallium  | 1.1 B  | 1.2   | 0.49   | mg/kg | Ī  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Vanadium  | 85.9   | 6.1   | 0.10   | mg/kg | i  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |
| Zinc      | 61.1   | 6.1   | 0.27   | mg/kg | i  | 02/01/17 | 02/02/17 ND | SW846 6010C <sup>2</sup> | SW846 3050B <sup>4</sup> |

(1) Instrument QC Batch: MA41277(2) Instrument QC Batch: MA41292(3) Prep QC Batch: MP98464(4) Prep QC Batch: MP98471



## Report of Analysis

Page 1 of 3

Client Sample ID: B5SS-1

Lab Sample ID: JC36373-7 Matrix: SO - Soil

Method:

Project:

SW846 8270D SW846 3546

BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 94.1

File ID DF Prep Batch **Analytical Batch** Analyzed By Prep Date Run #1 6P34790.D I 02/08/17 AC 01/30/17 OP173 E6P1601

Run #2

Initial Weight Final Volume

Run #1 30.7 g

Run #2

1.0 ml

## **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL | Units | Q |
|-----------|----------------------------|--------|-----|-----|-------|---|
| 95-57-8   | 2-Chlorophenol             | ND     | 69  | 17  | ug/kg |   |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 170 | 21  | ug/kg |   |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 170 | 30  | ug/kg |   |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 170 | 62  | ug/kg |   |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 170 | 130 | ug/kg |   |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 170 | 37  | ug/kg |   |
| 95-48-7   | 2-Methylphenol             | ND     | 69  | 22  | ug/kg |   |
|           | 3&4-Methylphenol           | ND     | 69  | 28  | ug/kg |   |
| 88-75-5   | 2-Nitrophenol              | ND     | 170 | 23  | ug/kg |   |
| 100-02-7  | 4-Nitrophenol              | ND     | 350 | 92  | ug/kg |   |
| 87-86-5   | Pentachlorophenol          | ND     | 140 | 33  | ug/kg |   |
| 108-95-2  | Phenol                     | ND     | 69  | 18  | ug/kg |   |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 170 | 23  | ug/kg |   |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 170 | 26  | ug/kg |   |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 170 | 21  | ug/kg |   |
| 83-32-9   | Acenaphthene               | ND     | 35  | 12  | ug/kg |   |
| 208-96-8  | Acenaphthylene             | ND     | 35  | 18  | ug/kg |   |
| 98-86-2   | Acetophenone               | ND     | 170 | 7.4 | ug/kg |   |
| 120-12-7  | Anthracene                 | ND     | 35  | 21  | ug/kg |   |
| 1912-24-9 | Atrazine                   | ND     | 69  | 15  | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene         | ND     | 35  | 9.8 | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 35  | 15  | ug/kg |   |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 35  | 17  | ug/kg |   |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 35  | 16  | ug/kg |   |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 69  | 13  | ug/kg |   |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 69  | 8.4 | ug/kg |   |
| 92-52-4   | 1, 1'-Biphenyl             | ND     | 69  | 4.7 | ug/kg |   |
| 100-52-7  | Benzaldehyde               | 39.3   | 170 | 8.6 | ug/kg | J |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 69  | 8.2 | ug/kg |   |
| 106-47-8  | 4-Chloroaniline            | ND     | 170 | 12  | ug/kg |   |
| 86-74-8   | Carbazole                  | ND     | 69  | 5.0 | ug/kg |   |
| 105-60-2  | Caprolactam                | ND     | 69  | 14  | ug/kg |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: B5SS-1 Lab Sample ID: JC36373-7 Matrix: SO - Soil

SW846 8270D SW846 3546

Method: Project: BMSMC, PR Date Sampled: 01/25/17 Date Received: 01/27/17 Percent Solids: 94.1

### **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q           |
|-----------|-----------------------------|--------|--------|------|-------|-------------|
| 218-01-9  | Chrysene                    | ND     | 35     | 11   | ug/kg |             |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 69     | 7.4  | ug/kg |             |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 69     | 15   | ug/kg |             |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 69     | 12   | ug/kg |             |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 69     | 11   | ug/kg |             |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 35     | H    | ug/kg |             |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 35     | 17   | ug/kg |             |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 69     | 29   | ug/kg |             |
| 123-91-1  | 1,4-Dioxane                 | ND     | 35     | 23   | ug/kg |             |
| 132-64-9  | Dibenzofuran                | ND     | 69     | 14   | ug/kg |             |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 69     | 5.6  | ug/kg |             |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 69     | 8.6  | ug/kg |             |
| 84-66-2   | Diethyl phthalate           | ND     | 69     | 7.4  | ug/kg |             |
| 131-11-3  | Dimethyl phthalate          | 66.3   | 69     | 6.2  | ug/kg | J           |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 69     | 8.1  | ug/kg |             |
| 206-44-0  | Fluoranthene                | ND     | 35     | 15   | ug/kg |             |
| 86-73-7   | Fluorene                    | ND     | 35     | 16   | ug/kg |             |
| 118-74-1  | Hexachlorobenzene           | ND     | 69     | 8.8  | ug/kg |             |
| 87-68-3   | Hexachlorobutadiene         | ND     | 35     | 14   | ug/kg |             |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 350    | 14   | ug/kg |             |
| 67-72-1   | Hexachloroethane            | ND     | 170    | 17   | ug/kg |             |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 35     | 16   | ug/kg |             |
| 78-59-1   | Isophorone                  | ND     | 69     | 7.4  | ug/kg |             |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 69     | 6.8  | ug/kg |             |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 69     | 7.8  | ug/kg |             |
| 88-74-4   | 2-Nitroaniline              | ND     | 170    | 8.2  | ug/kg |             |
| 99-09-2   | 3-Nitroaniline              | ND     | 170    | 8.7  | ug/kg |             |
| 100-01-6  | 4-Nitroaniline              | ND     | 170    | 9.0  | ug/kg |             |
| 91-20-3   | Naphthalene                 | ND     | 35     | 9.8  | ug/kg |             |
| 98-95-3   | Nitrobenzene                | ND     | 69     | 13   | ug/kg |             |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 69     | 10   | ug/kg |             |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 170    | 13   | ug/kg | POCATO      |
| 85-01-8   | Phenanthrene                | ND     | 35     | 12   | ug/kg | 337         |
| 129-00-0  | Pyrene                      | ND     | 35     | 11   | ug/kg | 1 Street In |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 170    | 8.8  | ug/kg | Name Admin  |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Limi | ts    | [( = 1      |
|           | •                           |        |        |      |       | "MICO LIC   |
| 367-12-4  | 2-Fluorophenol              | 77%    |        | 23-1 | 15%   | M/CO LICE   |
| 4165-62-2 | Phenol-d5                   | 77%    |        | 27-1 | 14%   | O LIIO      |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 3 of 3

Client Sample ID: B5SS-I

Lab Sample ID: JC36373-7 Matrix: SO - Soil

SW846 8270D SW846 3546

Project: BMSMC, PR

**Date Sampled:** 01/25/17 **Date Received:** 01/27/17

Percent Solids: 94.1

27<u>7</u>17 1

### **ABN Special List**

Method:

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 84%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 78%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 77%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 82%    |        | 36-134% |



ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank

RL = Reporting Limit E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

SGS

## Report of Analysis

Page 1 of I

Client Sample ID: B5SS-1

Lab Sample ID:

JC36373-7

Matrix:

SO - Soil

Method: Project:

SW846 8270D BY SIM SW846 3546

1

BMSMC, PR

Date Sampled: 01/25/17

Date Received: 01/27/17

Percent Solids: 94.1

File ID Analyzed

DF

By Prep Date SG 01/30/17

**Prep Batch OP173A** 

Q

**Analytical Batch** 

E4M3201

Run #1 Run #2

53-70-3

Initial Weight

4M69665.D

**Final Volume** 

Run #1 30.7 g

1.0 ml

Run #2

CAS No. Compound 50-32-8 Benzo(a)pyrene

Dibenzo(a,h)anthracene

3.5 3.5

RL

Run# 2

0.84 ug/kg 0.81 ug/kg

Limits

Units

**MDL** 

CAS No. Surrogate Recoveries

4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 1718-51-0 Terphenyl-d14

Run#1 48%

54%

79%

Result

ND

ND

01/30/17

15-138% 12-148% 10-157%



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID: B5SS-1

Lab Sample ID:

JC36373-7

Matrix:

SO - Soil

Method: Project:

SW846-8015C (DAI)

BMSMC, PR

Date Sampled: 01/25/17

Date Received: 01/27/17

Percent Solids: 94.1

Ву File ID DF Analyzed **Prep Date** Prep Batch **Analytical Batch** Run #1 GH108428.D 01/30/17 XPL GGH5640 1 n/a n/a

Run #2

Initial Weight

Run #1 5.0 g

Run #2

Low Molecular Alcohol List

| CAS No. | Compound          | Result | RL  | MDL | Units | Q |
|---------|-------------------|--------|-----|-----|-------|---|
| 64-17-5 | Ethanol           | ND     | 110 | 73  | ug/kg |   |
| 78-83-1 | Isobutyl Alcohol  | ND     | 110 | 62  | ug/kg |   |
| 67-63-0 | Isopropyl Alcohol | ND     | 110 | 61  | ug/kg |   |
| 71-23-8 | n-Propyl Alcohol  | ND     | 110 | 43  | ug/kg |   |
| 71-36-3 | n-Butyl Alcohol   | ND     | 110 | 58  | ug/kg |   |
| 78-92-2 | sec-Butyl Alcohol | ND     | 110 | 57  | ug/kg |   |
| 67-56-1 | Methanol          | ND     | 210 | 51  | ug/kg |   |
|         |                   |        |     |     |       |   |

| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|----------|----------------------|--------|--------|---------|
| 111-27-3 | Hexanol              | 96%    |        | 52-141% |
| 111-27-3 | Hexanol              | 85%    |        | 52-141% |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

By

KD

01/31/17

Page 1 of 1

Client Sample ID: B5SS-1

Lab Sample ID:

JC36373-7

Matrix: Method: SO - Soil

SW846 8081B SW846 3546

Analyzed

02/01/17

Project:

BMSMC, PR

Date Sampled: 01/25/17

Date Received: 01/27/17

G4G2017

OP215

Q

J

Percent Solids: 94.1

**Prep Date** Prep Batch **Analytical Batch** 

Run #1 Run #2

**Initial Weight** 

File ID

4G77556.D

Run #1 15.7 g 10.0 ml

Final Volume

DF

1

Run #2

#### Pesticide TCL List

| CAS No.    | Compound            | Result | RL   | MDL  | Units |
|------------|---------------------|--------|------|------|-------|
| 309-00-2   | Aldrin              | ND     | 0.68 | 0.32 | ug/kg |
| 319-84-6   | alpha-BHC           | ND     | 0.68 | 0.36 | ug/kg |
| 319-85-7   | beta-BHC            | ND     | 0.68 | 0.43 | ug/kg |
| 319-86-8   | delta-BHC           | ND     | 0.68 | 0.31 | ug/kg |
| 58-89-9    | gamma-BHC (Lindane) | ND     | 0.68 | 0.30 | ug/kg |
| 5103-71-9  | alpha-Chlordane     | ND     | 0.68 | 0.32 | ug/kg |
| 5103-74-2  | gamma-Chlordane a   | 0.31   | 0.68 | 0.30 | ug/kg |
| 60-57-1    | Dieldrin            | ND     | 0.68 | 0.34 | ug/kg |
| 72-54-8    | 4,4'-DDD            | ND     | 0.68 | 0.43 | ug/kg |
| 72-55-9    | 4,4'-DDE            | ND     | 0.68 | 0.35 | ug/kg |
| 50-29-3    | 4,4'-DDT            | ND     | 0.68 | 0.40 | ug/kg |
| 72-20-8    | Endrin              | ND     | 0.68 | 0.32 | ug/kg |
| 1031-07-8  | Endosulfan sulfate  | ND     | 0.68 | 0.27 | ug/kg |
| 7421-93-4  | Endrin aldehyde     | ND     | 0.68 | 0.40 | ug/kg |
| 959-98-8   | Endosulfan-I        | ND     | 0.68 | 0.35 | ug/kg |
| 33213-65-9 | Endosulfan-II       | ND     | 0.68 | 0.35 | ug/kg |
| 76-44-8    | Heptachlor          | ND     | 0.68 | 0.33 | ug/kg |
| 1024-57-3  | Heptachlor epoxide  | ND     | 0.68 | 0.36 | ug/kg |
| 72-43-5    | Methoxychlor        | ND     | 1.4  | 0.34 | ug/kg |
| 53494-70-5 | Endrin ketone       | ND     | 0.68 | 0.52 | ug/kg |
| 8001-35-2  | Toxaphene           | ND     | 17   | 7.0  | ug/kg |

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 877-09-8  | Tetrachloro-m-xylene | 83%    |        | 24-136% |
| 877-09-8  | Tetrachloro-m-xylene | 79%    |        | 24-136% |
| 2051-24-3 | Decachlorobiphenyl   | 103%   |        | 10-153% |
| 2051-24-3 | Decachlorobiphenyl   | 79%    |        | 10-153% |

(a) More than 40 % RPD for detected concentrations between the two GC columns.



ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

# Report of Analysis

Page 1 of 3

Client Sample ID: B5SS-2

Lab Sample ID: JC36373-8 Matrix: SO - Soil

Method:

SW846 8270D SW846 3546

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 95.6

Project: BMSMC, PR

File ID DF

Analyzed

By Prep Date AC 01/30/17

Prep Batch

**Analytical Batch** 

Run #1 6P34791.D 1 02/08/17 OP173 E6P1601

Run #2

Final Volume Initial Weight

Run #1 30.4 g 1.0 ml

Run #2

### **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL | Units | Q |
|-----------|----------------------------|--------|-----|-----|-------|---|
| 95-57-8   | 2-Chlorophenol             | ND     | 69  | 17  | ug/kg |   |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 170 | 21  | ug/kg |   |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 170 | 29  | ug/kg |   |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 170 | 61  | ug/kg |   |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 170 | 130 | ug/kg |   |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 170 | 37  | ug/kg |   |
| 95-48-7   | 2-Methylphenol             | ND     | 69  | 22  | ug/kg |   |
|           | 3&4-Methylphenol           | ND     | 69  | 28  | ug/kg |   |
| 88-75-5   | 2-Nitrophenol              | ND     | 170 | 23  | ug/kg |   |
| 100-02-7  | 4-Nitrophenol              | ND     | 340 | 92  | ug/kg |   |
| 87-86-5   | Pentachlorophenol          | ND     | 140 | 32  | ug/kg |   |
| 108-95-2  | Phenol                     | ND     | 69  | 18  | ug/kg |   |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 170 | 23  | ug/kg |   |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 170 | 26  | ug/kg |   |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 170 | 21  | ug/kg |   |
| 83-32-9   | Acenaphthene               | ND     | 34  | 12  | ug/kg |   |
| 208-96-8  | Acenaphthylene             | ND     | 34  | 17  | ug/kg |   |
| 98-86-2   | Acetophenone               | ND     | 170 | 7.4 | ug/kg |   |
| 120-12-7  | Anthracene                 | ND     | 34  | 21  | ug/kg |   |
| 1912-24-9 | Atrazine                   | ND     | 69  | 15  | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene         | ND     | 34  | 9.7 | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 34  | 15  | ug/kg |   |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 34  | 17  | ug/kg |   |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 34  | 16  | ug/kg |   |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 69  | 13  | ug/kg |   |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 69  | 8.4 | ug/kg |   |
| 92-52-4   | 1, 1'-Biphenyl             | ND     | 69  | 4.7 | ug/kg |   |
| 100-52-7  | Benzaldehyde               | 18.2   | 170 | 8.5 | ug/kg | J |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 69  | 8.2 | ug/kg |   |
| 106-47-8  | 4-Chloroaniline            | ND     | 170 | 12  | ug/kg |   |
| 86-74-8   | Carbazole                  | ND     | 69  | 5.0 | ug/kg |   |
| 105-60-2  | Caprolactam                | ND     | 69  | 14  | ug/kg |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 2 of 3

Client Sample ID: B5SS-2

Lab Sample ID: JC36373-8 Matrix: SO - Soil

Method: SW846 8270D SW846 3546

Project: BMSMC, PR Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 95.6

Q

## **ABN Special List**

| CAS No. Compound |                             | Result | RL     | MDL   | Units |
|------------------|-----------------------------|--------|--------|-------|-------|
| 218-01-9         | Chrysene                    | ND     | 34     | 11    | ug/kg |
| 111-91-1         | bis(2-Chloroethoxy)methane  | ND     | 69     | 7.4   | ug/kg |
| 111-44-4         | bis(2-Chloroethyl)ether     | ND     | 69     | 15    | ug/kg |
| 108-60-1         | bis(2-Chloroisopropyl)ether | ND     | 69     | 12    | ug/kg |
| 7005-72-3        | 4-Chlorophenyl phenyl ether | ND     | 69     | 11    | ug/kg |
| 121-14-2         | 2,4-Dinitrotoluene          | ND     | 34     | 11    | ug/kg |
| 606-20-2         | 2,6-Dinitrotoluene          | ND     | 34     | 17    | ug/kg |
| 91-94-1          | 3,3'-Dichlorobenzidine      | ND     | 69     | 29    | ug/kg |
| 123-91-1         | 1,4-Dioxane                 | ND     | 34     | 23    | ug/kg |
| 132-64-9         | Dibenzofuran                | ND     | 69     | 14    | ug/kg |
| 84-74-2          | Di-n-butyl phthalate        | ND     | 69     | 5.6   | ug/kg |
| 117-84-0         | Di-n-octyl phthalate        | ND     | 69     | 8.6   | ug/kg |
| 84-66-2          | Diethyl phthalate           | ND     | 69     | 7.3   | ug/kg |
| 131-11-3         | Dimethyl phthalate          | ND     | 69     | 6.1   | ug/kg |
| 117-81-7         | bis(2-Ethylhexyl)phthalate  | ND     | 69     | 8.1   | ug/kg |
| 206-44-0         | Fluoranthene                | ND     | 34     | 15    | ug/kg |
| 86-73-7          | Fluorene                    | ND     | 34     | 16    | ug/kg |
| 118-74-1         | Hexachlorobenzene           | ND     | 69     | 8.7   | ug/kg |
| 87-68-3          | Hexachlorobutadiene         | ND     | 34     | 14    | ug/kg |
| 77-47-4          | Hexachlorocyclopentadiene   | ND     | 340    | 14    | ug/kg |
| 67-72-1          | Hexachloroethane            | ND     | 170    | 17    | ug/kg |
| 193-39-5         | Indeno(1,2,3-cd)pyrene      | ND     | 34     | 16    | ug/kg |
| 78-59-1          | Isophorone                  | ND     | 69     | 7.4   | ug/kg |
| 90-12-0          | 1-Methylnaphthalene         | ND     | 69     | 6.7   | ug/kg |
| 91-57-6          | 2-Methylnaphthalene         | ND     | 69     | 7.8   | ug/kg |
| 88-74-4          | 2-Nitroaniline              | ND     | 170    | 8.1   | ug/kg |
| 99-09-2          | 3-Nitroaniline              | ND     | 170    | 8.6   | ug/kg |
| 100-01-6         | 4-Nitroaniline              | ND     | 170    | 8.9   | ug/kg |
| 91-20-3          | Naphthalene                 | ND     | 34     | 9.7   | ug/kg |
| 98-95-3          | Nitrobenzene                | ND     | 69     | 13    | ug/kg |
| 621-64-7         | N-Nitroso-di-n-propylamine  | ND     | 69     | 9.9   | ug/kg |
| 86-30-6          | N-Nitrosodiphenylamine      | ND     | 170    | 13    | ug/kg |
| 85-01-8          | Phenanthrene                | ND     | 34     | 12    | ug/kg |
| 129-00-0         | Pyrene                      | ND     | 34     | 11    | ug/kg |
| 95-94-3          | 1,2,4,5-Tetrachlorobenzene  | ND     | 170    | 8.7   | ug/kg |
| CAS No.          | Surrogate Recoveries        | Run# 1 | Run# 2 | Limi  | ts    |
| 367-12-4         | 2-Fluorophenol              | 77%    |        | 23-1  |       |
| 4165-62-2        | Phenol-d5                   | 77%    |        | 27-11 | 14%   |

luel Infante Mendez 10 = 1888

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Page 3 of 3

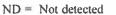
Client Sample ID: B5SS-2

Lab Sample ID: JC36373-8 Matrix: SO - Soil

Method: SW846 8270D SW846 3546

BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17


Percent Solids: 95.6

### **ABN Special List**

Project:

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 88%    |        | 19-152% |
| 4165-60-0 | Nitrobenzene-d5      | 77%    |        | 26-134% |
| 321-60-8  | 2-Fluorobiphenyl     | 78%    |        | 39-124% |
| 1718-51-0 | Terphenyl-d14        | 81%    |        | 36-134% |





MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID: B5SS-2 Lab Sample ID: JC36373-8

Matrix:

SO - Soil

Method: Project:

SW846 8270D BY SIM SW846 3546

BMSMC, PR

Date Sampled: 01/25/17

Q

Date Received: 01/27/17

Percent Solids: 95.6

File ID DF Analyzed By Prep Date **Prep Batch Analytical Batch** Run #1 4M69666.D 01/30/17 SG 01/30/17 **OP173A** E4M3201

Run #2

Initial Weight **Final Volume** 1.0 ml 30.4 g

Run #1 Run #2

CAS No. Compound Result RL MDL Units 50-32-8 Benzo(a)pyrene ND 3.4 0.84 ug/kg 53-70-3 Dibenzo(a, h)anthracene ND 3.4 0.80 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 54% 15-138% 321-60-8 2-Fluorobiphenyl 62% 12-148% 1718-51-0 Terphenyl-d14 88% 10-157%



ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

RL = Reporting Limit

E = Indicates value exceeds calibration range



# Report of Analysis

Page 1 of 1

Client Sample ID: B5SS-2

Lab Sample ID: JC36373-8 Matrix: SO - Soil

Method: Project:

SW846-8015C (DAI) BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: 95.6

File ID DF By **Prep Batch Analytical Batch** Analyzed **Prep Date** Run #1 GH108429.D 1 01/30/17 XPL n/a n/a GGH5640

Run #2

Initial Weight

Run #1 5.1 g

Run #2

#### Low Molecular Alcohol List

| CAS No.            | Compound                            | Result   | RL         | MDL      | Units          | Q |
|--------------------|-------------------------------------|----------|------------|----------|----------------|---|
| 64-17-5<br>78-83-1 | Ethanol<br>Isobutyl Alcohol         | ND<br>ND | 100        | 71<br>60 | ug/kg<br>ug/kg |   |
| 67-63-0            | Isopropyl Alcohol                   | ND       | 100        | 59       | ug/kg          |   |
| 71-23-8<br>71-36-3 | n-Propyl Alcohol<br>n-Butyl Alcohol | ND<br>ND | 001        | 41<br>56 | ug/kg<br>ug/kg |   |
| 78-92-2<br>67-56-1 | sec-Butyl Alcohol<br>Methanol       | ND<br>ND | 100<br>210 | 55<br>49 | ug/kg<br>ug/kg |   |
| CAS No.            | Surrogate Recoveries                | Run# 1   | Run# 2     | Lim      |                |   |
| 111-27-3           | Hexanol                             | 125%     |            | 57-1     | 41%            |   |
| 111-27-3           | Hexanol                             | 109%     |            |          | 41%            |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

58 of 1882

# Report of Analysis

Page 1 of I

Client Sample ID: B5SS-2

Lab Sample ID:

JC36373-8

Matrix: Method: SO - Soil

SW846 8081B SW846 3546

**Date Sampled:** 01/25/17 Date Received: 01/27/17

Percent Solids: 95.6

Project:

BMSMC, PR

File ID

DF 1

Analyzed 02/01/17

Ву KD

**Prep Date** 01/31/17

Prep Batch OP215

Q

**Analytical Batch** G4G2017

Run #1 Run #2

Initial Weight

4G77557.D

Final Volume

Run #1 Run #2

15.5 g

10.0 ml

#### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL  | Units | ( |
|------------|----------------------|--------|--------|------|-------|---|
| 309-00-2   | Aldrin               | ND     | 0.67   | 0.32 | ug/kg |   |
| 319-84-6   | alpha-BHC            | ND     | 0.67   | 0.36 | ug/kg |   |
| 319-85-7   | beta-BHC             | ND     | 0.67   | 0.42 | ug/kg |   |
| 319-86-8   | delta-BHC            | ND     | 0.67   | 0.31 | ug/kg |   |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.67   | 0.30 | ug/kg |   |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.67   | 0.32 | ug/kg |   |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.67   | 0.30 | ug/kg |   |
| 60-57-1    | Dieldrin             | ND     | 0.67   | 0.34 | ug/kg |   |
| 72-54-8    | 4,4'-DDD             | 2.0    | 0.67   | 0.43 | ug/kg |   |
| 72-55-9    | 4,4'-DDE             | ND     | 0.67   | 0.35 | ug/kg |   |
| 50-29-3    | 4,4' <i>-</i> DDT    | ND     | 0.67   | 0.40 | ug/kg |   |
| 72-20-8    | Endrin               | ND     | 0.67   | 0.32 | ug/kg |   |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.67   | 0.27 | ug/kg |   |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.67   | 0.40 | ug/kg |   |
| 959-98-8   | Endosulfan-I         | ND     | 0.67   | 0.35 | ug/kg |   |
| 33213-65-9 | Endosulfan-II        | ND     | 0.67   | 0.35 | ug/kg |   |
| 76-44-8    | Heptachlor           | ND     | 0.67   | 0.33 | ug/kg |   |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.67   | 0.36 | ug/kg |   |
| 72-43-5    | Methoxychlor         | ND     | 1.3    | 0.34 | ug/kg |   |
| 53494-70-5 | Endrin ketone        | ND     | 0.67   | 0.52 | ug/kg |   |
| 8001-35-2  | Toxaphene            | ND     | 17     | 7.0  | ug/kg |   |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |   |
| 877-09-8   | Tetrachloro-m-xylene | 85%    |        | 24-1 | 36%   |   |
| 877-09-8   | Tetrachloro-m-xylene | 79%    |        | 24-1 | 36%   |   |
|            |                      |        |        |      |       |   |



ND = Not detected

2051-24-3

2051-24-3

MDL = Method Detection Limit

111%

76%

J = Indicates an estimated value

10-153%

10-153%

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

# **Report of Analysis**

By

AC

Prep Date

01/30/17

Page 1 of 3

Client Sample ID: EB-012517

Lab Sample ID: JC36373-9

File ID

900 ml

2P66722.D

Matrix: Method:

Project:

AQ - Equipment Blank

SW846 8270D SW846 3510C

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: n/a

DF

1

BMSMC, PR

**Analytical Batch Prep Batch** OP192 E2P2930

Run #1 Run #2

Initial Volume

Final Volume

Analyzed

01/31/17

1.0 ml

Run #1 Run #2

### **ABN Special List**

| CAS No.   | Compound                   | Result | RL  | MDL  | Units | Q                                            |
|-----------|----------------------------|--------|-----|------|-------|----------------------------------------------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.6 | 0.91 | ug/l  |                                              |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.6 | 0.99 | ug/l  |                                              |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.2 | 1.4  | ug/l  |                                              |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.6 | 2.7  | ug/l  |                                              |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 11  | 1.7  | ug/l  |                                              |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.6 | 1.4  | ug/l  |                                              |
| 95-48-7   | 2-Methylphenol             | ND     | 2.2 | 0.99 | ug/l  |                                              |
|           | 3&4-Methylphenol           | ND     | 2.2 | 0.98 | ug/l  |                                              |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.6 | 1.1  | ug/l  |                                              |
| 100-02-7  | 4-Nitrophenol              | ND     | 11  | 1.3  | ug/l  |                                              |
| 87-86-5   | Pentachlorophenol          | ND     | 4.4 | 1.5  | ug/l  |                                              |
| 108-95-2  | Phenol                     | ND     | 2.2 | 0.44 | ug/I  |                                              |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.6 | 1.6  | ug/i  |                                              |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.6 | 1.5  | ug/l  |                                              |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.6 | 1.0  | ug/l  |                                              |
| 83-32-9   | Acenaphthene               | ND     | 1.1 | 0.21 | ug/l  |                                              |
| 208-96-8  | Acenaphthylene             | ND     | 1.1 | 0.15 | ug/l  |                                              |
| 98-86-2   | Acetophenone               | ND     | 2.2 | 0.23 | ug/l  |                                              |
| 120-12-7  | Anthracene                 | ND     | 1.1 | 0.23 | ug/l  |                                              |
| 1912-24-9 | Atrazine                   | ND     | 2.2 | 0.50 | ug/l  |                                              |
| 100-52-7  | Benzaldehyde               | ND     | 5.6 | 0.32 | ug/l  |                                              |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.1 | 0.23 | ug/l  |                                              |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.1 | 0.23 | ug/l  |                                              |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.1 | 0.38 | ug/l  | -antina-                                     |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.1 | 0.23 | ug/l  | Maraga                                       |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.2 | 0.45 | ug/l  | 330                                          |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.2 | 0.51 | ug/l  | / duel Infante                               |
| 92-52-4   | 1, 1'-Biphenyl             | ND     | 1.1 | 0.24 | ug/l  | Méndez                                       |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.2 | 0.26 | սք/1  | IC = 1888                                    |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.6 | 0.38 | ug/l  |                                              |
| 86-74-8   | Carbazole                  | ND     | 1.1 | 0.25 | ug/l  | Till San |
| 105-60-2  | Caprolactam                | ND     | 2.2 | 0.72 | ug/l  | MICO LICENCY                                 |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Client Sample ID: EB-012517

Lab Sample ID: JC36373-9
Matrix: AQ - Equipment Blank

Method: SW846 8270D SW846 3510C

Project: BMSMC, PR

**Date Sampled:** 01/25/17 **Date Received:** 01/27/17

Percent Solids: n/a

## **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q                   |
|-----------|-----------------------------|--------|--------|------|-------|---------------------|
| 218-01-9  | Chrysene                    | ND     | 1.1    | 0.20 | ug/l  |                     |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.2    | 0.31 | ug/l  |                     |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.2    | 0.28 | ug/l  |                     |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.2    | 0.45 | ug/l  |                     |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.2    | 0.41 | ug/l  |                     |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.1    | 0.61 | ug/l  |                     |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.1    | 0.53 | ug/l  |                     |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.2    | 0.56 | ug/l  |                     |
| 123-91-1  | 1,4-Dioxane                 | ND     | 1.1    | 0.73 | ug/l  |                     |
| 132-64-9  | Dibenzofuran                | ND     | 5.6    | 0.24 | ug/l  |                     |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.2    | 0.55 | ug/l  |                     |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.2    | 0.26 | ug/l  |                     |
| 84-66-2   | Diethyl phthalate           | ND     | 2.2    | 0.29 | ug/l  |                     |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.2    | 0.24 | ug/l  |                     |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 2.2    | 1.8  | ug/l  |                     |
| 206-44-0  | Fluoranthene                | ND     | 1.1    | 0.19 | ug/l  |                     |
| 86-73-7   | Fluorene                    | ND     | 1.1    | 0.19 | ug/l  |                     |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.1    | 0.36 | ug/l  |                     |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.1    | 0.55 | ug/l  |                     |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 11     | 3.1  | ug/l  |                     |
| 67-72-1   | Hexachloroethane            | ND     | 2.2    | 0.43 | ug/l  |                     |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.1    | 0.37 | ug/l  |                     |
| 78-59-1   | Isophorone                  | ND     | 2.2    | 0.31 | ug/l  |                     |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.1    | 0.29 | ug/I  |                     |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.1    | 0.23 | ug/l  |                     |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.6    | 0.31 | ug/l  |                     |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.6    | 0.43 | ug/l  |                     |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.6    | 0.49 | ug/l  |                     |
| 91-20-3   | Naphthalene                 | ND     | 1.1    | 0.26 | ug/l  |                     |
| 98-95-3   | Nitrobenzene                | ND     | 2.2    | 0.71 | ug/l  |                     |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.2    | 0.53 | ug/l  | OF NOCWOOF          |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.6    | 0.25 | ug/l  | 198                 |
| 85-01-8   | Phenanthrene                | ND     | 1.1    | 0.19 | ug/l  | / 3                 |
| 129-00-0  | Pyrene                      | ND     | 1.1    | 0.24 | ug/l  | fuel Infante        |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.2    | 0.41 | ug/l  | Méndez<br>10 = 1888 |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Lim  | its   | MCO LICENCIA        |
| 367-12-4  | 2-Fluorophenol              | 36%    |        | 10-1 | 10%   | COTICEMO            |
| 4165-62-2 | Phenol-d5                   | 28%    |        | 10-1 |       | -                   |



MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



E = Indicates value exceeds calibration range

Client Sample ID: EB-012517 Lab Sample ID: JC36373-9

Matrix: Method:

AQ - Equipment Blank

SW846 8270D SW846 3510C BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: n/a

### **ABN Special List**

Project:

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 82%    |        | 36-151% |
| 4165-60-0 | Nitrobenzene-d5      | 82%    |        | 34-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 89%    |        | 38-119% |
| 1718-51-0 | Terphenyl-d14        | 86%    |        | 26-129% |



E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

Page 1 of 1

Client Sample ID: EB-012517 Lab Sample ID: JC36373-9

Matrix: Method:

AQ - Equipment Blank SW846 8270D BY SIM SW846 3510C **Date Sampled:** 01/25/17 Date Received: 01/27/17

Percent Solids: n/a

Project: BMSMC, PR

File ID DF Analyzed By Prep Date **Prep Batch Analytical Batch** Run #1 4M69688.D 02/02/17 SG 01/30/17 OP192A E4M3203

Run #2

Initial Volume **Final Volume** Run #1 900 ml 1.0 ml

Run #2

| CAS No.              | Compound                                 | Result     | RL            | MDL            | Units        | Q |
|----------------------|------------------------------------------|------------|---------------|----------------|--------------|---|
| 50-32-8<br>53-70-3   | Benzo(a)pyrene<br>Dibenzo(a,h)anthracene | ND<br>ND   | 0.056<br>0.11 | 0.037<br>0.040 | ug/l<br>ug/l |   |
|                      |                                          |            |               | Limits         |              |   |
| CAS No.              | Surrogate Recoveries                     | Run# 1     | Run# 2        | Lim            | its          |   |
| CAS No.<br>4165-60-0 | Surrogate Recoveries Nitrobenzene-d5     | Run# 1 58% | Run# 2        | Lim 24-1       |              |   |
|                      |                                          |            | Run# 2        | 24-1           |              |   |



ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

# Report of Analysis

Page 1 of 1

Client Sample ID: EB-012517

Lab Sample ID: JC36373-9

Matrix: Method: Project:

AQ - Equipment Blank SW846-8015C (DAI) BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: n/a

Q

File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 GH108411.D 1 01/30/17 XPL n/a n/a GGH5639

Run #2

#### Low Molecular Alcohol List

| CAS No.          | Compound             | Result | RL     | MDL       | Units |
|------------------|----------------------|--------|--------|-----------|-------|
| 64-17-5          | Ethanol              | ND     | 100    | <i>ee</i> | /1    |
|                  |                      |        |        | 55        | ug/l  |
| 78-83-1          | Isobutyl Alcohol     | ND     | 100    | 36        | ug/l  |
| 67-63-0          | Isopropyl Alcohol    | ND     | 100    | 68        | ug/l  |
| 71-23-8          | n-Propyl Alcohol     | ND     | 100    | 43        | ug/l  |
| 71-36-3          | n-Butyl Alcohol      | ND     | 100    | 87        | ug/l  |
| 78-92-2          | sec-Butyl Alcohol    | ND     | 100    | 66        | ug/l  |
| 67-56-1          | Methanol             | ND     | 200    | 71        | ug/l  |
|                  |                      |        |        |           |       |
| CAS No.          | Surrogate Recoveries | Run# 1 | Run# 2 | Lim       | its   |
| 111-27-3         | Hexanol              | 119%   |        | 56-1      | 45%   |
| 111-27-3 Hexanol |                      | 108%   |        | -         | 45%   |
|                  |                      |        |        |           |       |



ND Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# **Report of Analysis**

Page 1 of 1

Client Sample ID: EB-012517

Lab Sample ID: JC36373-9

Matrix: AQ - Equipment Blank

Method: SW846 8081B SW846 3510C

Project: BMSMC, PR Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: n/a

DF File ID Analyzed By Prep Date Prep Batch **Analytical Batch** G8G79 Run #1 8G2633.D 1 02/03/17 KD 02/01/17 **OP233** 

Run #2

Initial Volume Final Volume

Run #1 930 ml 10.0 ml

Run #2

#### Pesticide TCL List

| CAS No.    | Compound             | Result | RL     | MDL    | Units | Q                             |
|------------|----------------------|--------|--------|--------|-------|-------------------------------|
| 309-00-2   | Aldrin               | ND     | 0.011  | 0.0065 | ug/l  |                               |
| 319-84-6   | alpha-BHC            | ND     | 0.011  | 0.0065 | ug/l  |                               |
| 319-85-7   | beta-BHC             | ND     | 0.011  | 0.0061 | ug/l  |                               |
| 319-86-8   | delta-BHC            | ND     | 0.011  | 0.0049 | ug/l  |                               |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.011  | 0.0030 | ug/l  |                               |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.011  | 0.0050 | ug/l  |                               |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.011  | 0.0049 | ug/l  |                               |
| 60-57-1    | Dieldrin             | ND     | 0.011  | 0.0039 | ug/l  |                               |
| 72-54-8    | 4,4'-DDD             | ND     | 0.011  | 0.0041 | ug/l  |                               |
| 72-55-9    | 4,4'-DDE             | ND     | 0.011  | 0.0066 | ug/l  |                               |
| 50-29-3    | 4,4'-DDT             | ND     | 0.011  | 0.0053 | ug/l  |                               |
| 72-20-8    | Endrin               | ND     | 0.011  | 0.0054 | ug/I  |                               |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.011  | 0.0056 | ug/l  |                               |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.011  | 0.0055 | ug/l  |                               |
| 53494-70-5 | Endrin ketone        | ND     | 0.011  | 0.0055 | ug/l  |                               |
| 959-98-8   | Endosulfan-l         | ND     | 0.011  | 0.0053 | ug/l  |                               |
| 33213-65-9 | Endosulfan-II        | ND     | 0.011  | 0.0046 | ug/l  |                               |
| 76-44-8    | Heptachlor           | ND     | 0.011  | 0.0041 | ug/l  |                               |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.011  | 0.0070 | ug/l  |                               |
| 72-43-5    | Methoxychlor         | ND     | 0.022  | 0.0061 | ug/l  | COCHADO DO                    |
| 8001-35-2  | Toxaphene            | ND     | 0.27   | 0.20   | ug/l  | all have the fifth            |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2 | Limi   | ts    | tuel Infante Méndez 1( = 1888 |
| 877-09-8   | Tetrachloro-m-xylene | 81%    |        | 13-1:  | 53%   | 1( = 1888                     |
| 877-09-8   | Tetrachloro-m-xylene | 83%    |        | 13-13  | 53%   | 10/                           |
| 2051-24-3  | Decachlorobiphenyl   | 43%    |        | 10-13  | 38%   | Man wells                     |
| 2051-24-3  | Decachlorobiphenyl   | 38%    |        | 10-13  | 38%   | MICO LICENCIADO               |



MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: EB-012517 Lab Sample ID: JC36373-9

Matrix: AQ - Equipment Blank

Date Sampled: 01/25/17
Date Received: 01/27/17
Percent Solids: n/a

Project: BMSMC, PR

### **Total Metals Analysis**

| Analyte   | Result  | RL    | MDL   | Units | DF | Prep     | Analyzed | Ву  | Method                   | Prep Method              |
|-----------|---------|-------|-------|-------|----|----------|----------|-----|--------------------------|--------------------------|
| Aluminum  | 35.2 B  | 200   | 21    | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Antimony  | 3.3 U   | 6.0   | 3.3   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Arsenic   | 2.2 U   | 3.0   | 2.2   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Barium    | 1.4 B   | 200   | 0.44  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Beryllium | 0.25 U  | 1.0   | 0.25  | ug/l  | I  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Cadmium   | 0.40 U  | 3.0   | 0.40  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Calcium   | 283 B   | 5000  | 33    | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Chromium  | 0.81 U  | 10    | 0.81  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Cobalt    | 0.69 U  | 50    | 0.69  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Copper    | 2.4 U   | 10    | 2.4   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Iron      | 12 U    | 100   | 12    | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Lead      | 2.3 U   | 3.0   | 2.3   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Magnesium | 85 U    | 5000  | 85    | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Manganese | 8.8 B   | 15    | 0.39  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Mercury   | 0.056 B | 0.20  | 0.047 | ug/l  | 1  | 02/01/17 | 02/01/17 | JPM | SW846 7470A <sup>1</sup> | SW846 7470A <sup>4</sup> |
| Nickel    | 0.76 U  | 10    | 0.76  | սք/1  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Potassium | 120 U   | 10000 | 120   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Selenium  | 4.1 U   | 10    | 4.1   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Silver    | 0.88 U  | 10    | 0.88  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Sodium    | 208 B   | 10000 | 24    | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Thallium  | 1.9 U   | 10    | 1.9   | ug/I  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Vanadium  | 0.66 U  | 50    | 0.66  | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |
| Zinc      | 1.3 U   | 20    | 1.3   | ug/l  | 1  | 01/31/17 | 02/01/17 | DE  | SW846 6010C <sup>2</sup> | SW846 3010A <sup>3</sup> |

(1) Instrument QC Batch: MA41282(2) Instrument QC Batch: MA41283(3) Prep QC Batch: MP98461(4) Prep QC Batch: MP98472



# Report of Analysis

By

AC

Page 1 of 3

Client Sample ID: FB-012517

Lab Sample ID: JC36373-10

File ID

2P66723.D

Matrix:

AQ - Field Blank Soil

DF

Analyzed

01/31/17

Date Sampled: 01/25/17 Date Received: 01/27/17

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, PR

Prep Date 01/30/17

Prep Batch OP192

Q

**Analytical Batch** E2P2930

Run #1 Run #2

> Initial Volume **Final Volume**

910 ml Run #1

1.0 ml

Run #2

## **ABN Special List**

| CAS No.   | Compound                   | Result | RL   | MDL  | Units |
|-----------|----------------------------|--------|------|------|-------|
| 95-57-8   | 2-Chlorophenol             | ND     | 5.5  | 0.90 | ug/l  |
| 59-50-7   | 4-Chloro-3-methyl phenol   | ND     | 5.5  | 0.98 | ug/l  |
| 120-83-2  | 2,4-Dichlorophenol         | ND     | 2.2  | 1.4  | ug/l  |
| 105-67-9  | 2,4-Dimethylphenol         | ND     | 5.5  | 2.7  | ug/l  |
| 51-28-5   | 2,4-Dinitrophenol          | ND     | 11   | 1.7  | ug/l  |
| 534-52-1  | 4,6-Dinitro-o-cresol       | ND     | 5.5  | 1.4  | ug/l  |
| 95-48-7   | 2-Methylphenol             | ND     | 2.2  | 0.98 | ug/l  |
|           | 3&4-Methylphenol           | ND     | 2.2  | 0.97 | ug/l  |
| 88-75-5   | 2-Nitrophenol              | ND     | 5.5  | 1.1  | ug/1  |
| 100-02-7  | 4-Nitrophenol              | ND     | - 11 | 1.3  | ug/l  |
| 87-86-5   | Pentachlorophenol          | ND     | 4.4  | 1.5  | ug/l  |
| 108-95-2  | Phenol                     | ND     | 2.2  | 0.43 | ug/l  |
| 58-90-2   | 2,3,4,6-Tetrachlorophenol  | ND     | 5.5  | 1.6  | ug/l  |
| 95-95-4   | 2,4,5-Trichlorophenol      | ND     | 5.5  | 1.5  | ug/l  |
| 88-06-2   | 2,4,6-Trichlorophenol      | ND     | 5.5  | 1.0  | ug/l  |
| 83-32-9   | Acenaphthene               | ND     | 1.1  | 0.21 | ug/l  |
| 208-96-8  | Acenaphthylene             | ND     | 1.1  | 0.15 | ug/l  |
| 98-86-2   | Acetophenone               | ND     | 2.2  | 0.23 | ug/l  |
| 120-12-7  | Anthracene                 | ND     | 1.1  | 0.23 | ug/l  |
| 1912-24-9 | Atrazine                   | ND     | 2.2  | 0.49 | ug/l  |
| 100-52-7  | Benzaldehyde               | ND     | 5.5  | 0.32 | ug/l  |
| 56-55-3   | Benzo(a)anthracene         | ND     | 1.1  | 0.22 | ug/l  |
| 205-99-2  | Benzo(b)fluoranthene       | ND     | 1.1  | 0.23 | ug/l  |
| 191-24-2  | Benzo(g,h,i)perylene       | ND     | 1.1  | 0.37 | ug/l  |
| 207-08-9  | Benzo(k)fluoranthene       | ND     | 1.1  | 0.23 | ug/l  |
| 101-55-3  | 4-Bromophenyl phenyl ether | ND     | 2.2  | 0.44 | ug/l  |
| 85-68-7   | Butyl benzyl phthalate     | ND     | 2.2  | 0.50 | ug/l  |
| 92-52-4   | 1, 1'-Biphenyl             | ND     | 1.1  | 0.23 | ug/l  |
| 91-58-7   | 2-Chloronaphthalene        | ND     | 2.2  | 0.26 | սք/Լ  |
| 106-47-8  | 4-Chloroaniline            | ND     | 5.5  | 0.37 | ug/l  |
| 86-74-8   | Carbazole                  | ND     | 1.1  | 0.25 | ug/l  |
| 105-60-2  | Caprolactam                | ND     | 2.2  | 0.71 | ug/l  |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 2 of 3

Client Sample ID: FB-012517

Lab Sample ID: JC36373-10

Date Sampled: 01/25/17 Matrix: AQ - Field Blank Soil Date Received: 01/27/17 Method: SW846 8270D SW846 3510C Percent Solids: n/a

Project: BMSMC, PR

## **ABN Special List**

| CAS No.   | Compound                    | Result | RL     | MDL  | Units | Q                             |
|-----------|-----------------------------|--------|--------|------|-------|-------------------------------|
| 218-01-9  | Chrysene                    | ND     | 1.1    | 0.19 | ug/l  |                               |
| 111-91-1  | bis(2-Chloroethoxy)methane  | ND     | 2.2    | 0.31 | ug/l  |                               |
| 111-44-4  | bis(2-Chloroethyl)ether     | ND     | 2.2    | 0.27 | ug/l  |                               |
| 108-60-1  | bis(2-Chloroisopropyl)ether | ND     | 2.2    | 0.44 | ug/l  |                               |
| 7005-72-3 | 4-Chlorophenyl phenyl ether | ND     | 2.2    | 0.40 | ug/l  |                               |
| 121-14-2  | 2,4-Dinitrotoluene          | ND     | 1.1    | 0.61 | ug/l  |                               |
| 606-20-2  | 2,6-Dinitrotoluene          | ND     | 1.1    | 0.52 | ug/l  |                               |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND     | 2.2    | 0.56 | ug/l  |                               |
| 123-91-1  | 1,4-Dioxane                 | ND     | 1.1    | 0.72 | ug/l  |                               |
| 132-64-9  | Dibenzofuran                | ND     | 5.5    | 0.24 | ug/l  |                               |
| 84-74-2   | Di-n-butyl phthalate        | ND     | 2.2    | 0.55 | ug/l  |                               |
| 117-84-0  | Di-n-octyl phthalate        | ND     | 2.2    | 0.26 | ug/l  |                               |
| 84-66-2   | Diethyl phthalate           | ND     | 2.2    | 0.29 | ug/l  |                               |
| 131-11-3  | Dimethyl phthalate          | ND     | 2.2    | 0.24 | ug/l  |                               |
| 117-81-7  | bis(2-Ethylhexyl)phthalate  | ND     | 2.2    | 1.8  | ug/l  |                               |
| 206-44-0  | Fluoranthene                | ND     | 1.1    | 0.19 | ug/l  |                               |
| 86-73-7   | Fluorene                    | ND     | 1.1    | 0.19 | ug/l  |                               |
| 118-74-1  | Hexachlorobenzene           | ND     | 1.1    | 0.36 | ug/l  |                               |
| 87-68-3   | Hexachlorobutadiene         | ND     | 1.1    | 0.54 | ug/l  |                               |
| 77-47-4   | Hexachlorocyclopentadiene   | ND     | 11     | 3.1  | ug/l  |                               |
| 67-72-1   | Hexachloroethane            | ND     | 2.2    | 0.43 | ug/l  |                               |
| 193-39-5  | Indeno(1,2,3-cd)pyrene      | ND     | 1.1    | 0.36 | ug/l  |                               |
| 78-59-1   | Isophorone                  | ND     | 2.2    | 0.30 | ug/l  |                               |
| 90-12-0   | 1-Methylnaphthalene         | ND     | 1.1    | 0.29 | ug/l  |                               |
| 91-57-6   | 2-Methylnaphthalene         | ND     | 1.1    | 0.23 | ug/l  |                               |
| 88-74-4   | 2-Nitroaniline              | ND     | 5.5    | 0.30 | սջ/1  |                               |
| 99-09-2   | 3-Nitroaniline              | ND     | 5.5    | 0.43 | ug/l  |                               |
| 100-01-6  | 4-Nitroaniline              | ND     | 5.5    | 0.48 | ug/l  |                               |
| 91-20-3   | Naphthalene                 | ND     | 1.1    | 0.25 | ug/l  |                               |
| 98-95-3   | Nitrobenzene                | ND     | 2.2    | 0.71 | ug/l  |                               |
| 621-64-7  | N-Nitroso-di-n-propylamine  | ND     | 2.2    | 0.53 | ug/l  |                               |
| 86-30-6   | N-Nitrosodiphenylamine      | ND     | 5.5    | 0.24 | ug/l  | SOCIADO DE                    |
| 85-01-8   | Phenanthrene                | ND     | 1.1    | 0.19 | ug/l  | age.                          |
| 129-00-0  | Pyrene                      | ND     | 1.1    | 0.24 | ug/!  |                               |
| 95-94-3   | 1,2,4,5-Tetrachlorobenzene  | ND     | 2.2    | 0.41 | ug/l  | tael Infante   2              |
| CAS No.   | Surrogate Recoveries        | Run# 1 | Run# 2 | Limi | ts    | tael Infante Méndez IC = 1888 |
|           |                             |        |        |      |       | CO LICENCINO                  |
| 367-12-4  | 2-Fluorophenol              | 26%    |        | 10-1 |       | COLICENCIA                    |
| 4165-62-2 | Phenol-d5                   | 20%    |        | 10-1 | 10%   | LICE                          |

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 3 of 3

# Report of Analysis

Client Sample ID: FB-012517 Lab Sample ID:

JC36373-10

Matrix:

AQ - Field Blank Soil

Method: Project:

SW846 8270D SW846 3510C BMSMC, PR

Date Sampled: 01/25/17 Date Received: 01/27/17

Percent Solids: n/a

## **ABN Special List**

| CAS No.   | Surrogate Recoveries | Run# 1 | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 118-79-6  | 2,4,6-Tribromophenol | 72%    |        | 36-151% |
| 4165-60-0 | Nitrobenzene-d5      | 74%    |        | 34-128% |
| 321-60-8  | 2-Fluorobiphenyl     | 79%    |        | 38-119% |
| 1718-51-0 | Terphenyl-d14        | 66%    |        | 26-129% |







RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

# Report of Analysis

By

SG

RL

0.11

Page 1 of 1

|   | Client Sample ID: |
|---|-------------------|
| ı | Lab Sample ID:    |

FB-012517

Matrix:

JC36373-10

Method:

Π.

AQ - Field Blank Soil

DF

1

SW846 8270D BY SIM SW846 3510C

Date Sampled: Date Received: 01/27/17

01/25/17

Percent Solids: n/a

OP192A

Q

Project:

BMSMC, PR

**Prep Batch** 

**Analytical Batch** E4M3203

Run #1 Run #2

Initial Volume

Compound

Benzo(a)pyrene

Dibenzo(a,h)anthracene

4M69689.D

File ID

910 ml

**Final Volume** 

1.0 ml

Run #1 Run #2

CAS No.

50-32-8

53-70-3

Result

Analyzed

02/02/17

**MDL** 0.055

Units

ug/l

0.037 ug/l

0.040

**Prep Date** 

01/30/17

CAS No. Surrogate Recoveries

Run# 1

ND

ND

Run# 2 Limits

24-125% 19-127%

10-119%

4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 1718-51-0 Terphenyl-d14

54% 54% 65%

daef Infante Méndez IC # 1888

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

# **Report of Analysis**

Page 1 of 1

Client Sample ID: FB-012517

Lab Sample ID:

JC36373-10

Matrix: Method: AQ - Field Blank Soil SW846-8015C (DAI)

Date Sampled: 01/25/17 Date Received: 01/27/17

Project:

BMSMC, PR

Percent Solids: n/a

Run #1

File ID GH108412.D DF Analyzed 01/30/17 1

By XPL **Prep Date** n/a

Prep Batch n/a

Q

**Analytical Batch** GGH5639

Run #2

Low Molecular Alcohol List

| CAS No.  | Compound             | Result | RL     | MDL  | Units |  |
|----------|----------------------|--------|--------|------|-------|--|
| 64-17-5  | Ethanol              | ND     | 100    | 55   | ug/l  |  |
| 78-83-1  | Isobutyl Alcohol     | ND     | 100    | 36   | ug/l  |  |
| 67-63-0  | Isopropyl Alcohol    | ND     | 100    | 68   | ug/l  |  |
| 71-23-8  | n-Propyl Alcohol     | ND     | 100    | 43   | ug/l  |  |
| 71-36-3  | n-Butyl Alcohol      | ND     | 100    | 87   | ug/l  |  |
| 78-92-2  | sec-Butyl Alcohol    | ND     | 100    | 66   | ug/l  |  |
| 67-56-1  | Methanol             | ND     | 200    | 71   | ug/l  |  |
| CAS No.  | Surrogate Recoveries | Run# 1 | Run# 2 | Lim  | its   |  |
| 111-27-3 | Hexanol              | 117%   |        | 56-1 | 45%   |  |
| 111-27-3 | Hexanol              | 97%    |        | 56-1 | 45%   |  |



ND Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# **Report of Analysis**

Page 1 of 1

Client Sample ID: FB-012517

Lab Sample ID:

JC36373-10

Matrix:

AQ - Field Blank Soil

Method:

SW846 8081B SW846 3510C

Date Sampled: 01/25/17

Date Received: 01/27/17

Percent Solids: n/a

Project:

BMSMC, PR

File ID DF

**Prep Date** 

Prep Batch **OP233** 

Q

**Analytical Batch** G8G79

Run #1 8G2634.D 1 02/03/17 KD 02/01/17

Analyzed

 $\mathbf{B}\mathbf{y}$ 

Run #2

Initial Volume

920 ml

Final Volume

Run #1 Run #2 10.0 ml

Pesticide TCL List

| O 4 O 31 | A 1 |  |
|----------|-----|--|

| CAS No.    | Compound             | Result | RL            | MDL    | Units |
|------------|----------------------|--------|---------------|--------|-------|
| 309-00-2   | Aldrin               | ND     | 0.011         | 0.0066 | ug/l  |
| 319-84-6   | alpha-BHC            | ND     | 0.011         | 0.0065 | ug/l  |
| 319-85-7   | beta-BHC             | ND     | 0.011         | 0.0062 | ug/l  |
| 319-86-8   | delta-BHC            | ND     | 0.011         | 0.0050 | ug/l  |
| 58-89-9    | gamma-BHC (Lindane)  | ND     | 0.011         | 0.0030 | ug/l  |
| 5103-71-9  | alpha-Chlordane      | ND     | 0.011         | 0.0050 | ug/l  |
| 5103-74-2  | gamma-Chlordane      | ND     | 0.011         | 0.0050 | ug/l  |
| 60-57-1    | Dieldrin             | ND     | 0.011         | 0.0039 | ug/l  |
| 72-54-8    | 4,4'-DDD             | ND     | 0.011         | 0.0041 | ug/l  |
| 72-55-9    | 4,4'-DDE             | ND     | 0.011         | 0.0067 | ug/l  |
| 50-29-3    | 4,4'-DDT             | ND     | 0.011         | 0.0054 | ug/l  |
| 72-20-8    | Endrin               | ND     | 0.011         | 0.0055 | ug/l  |
| 1031-07-8  | Endosulfan sulfate   | ND     | 0.011         | 0.0057 | ug/l  |
| 7421-93-4  | Endrin aldehyde      | ND     | 0.011         | 0.0056 | ug/l  |
| 53494-70-5 | Endrin ketone        | ND     | 0.011         | 0.0055 | ug/l  |
| 959-98-8   | Endosulfan-I         | ND     | 0.011         | 0.0054 | ug/l  |
| 33213-65-9 | Endosulfan-II        | ND     | 0.011         | 0.0047 | ug/l  |
| 76-44-8    | Heptachlor           | ND     | 0.011         | 0.0041 | ug/l  |
| 1024-57-3  | Heptachlor epoxide   | ND     | 0.011         | 0.0071 | ug/l  |
| 72-43-5    | Methoxychlor         | ND     | 0.022         | 0.0062 | ug/l  |
| 8001-35-2  | Toxaphene            | ND     | 0.27          | 0.20   | ug/l  |
| CAS No.    | Surrogate Recoveries | Run# 1 | Run# 2 Limits |        | ts    |
|            |                      |        |               |        |       |

| CAS No.   | Surrogate Recoveries | Kun# I | Run# 2 | Limits  |
|-----------|----------------------|--------|--------|---------|
| 877-09-8  | Tetrachloro-m-xylene | 85%    |        | 13-153% |
| 877-09-8  | Tetrachloro-m-xylene | 86%    |        | 13-153% |
| 2051-24-3 | Decachlorobiphenyl   | 55%    |        | 10-138% |
| 2051-24-3 | Decachlorobiphenyl   | 47%    |        | 10-138% |
|           |                      |        |        |         |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



Page 1 of 1

Client Sample ID: FB-012517

Lab Sample ID: JC36373-10 Date
Matrix: AQ - Field Blank Soil Date

Date Sampled: 01/25/17
Date Received: 01/27/17
Percent Solids: n/a

Project: BMSMC, PR

## **Total Metals Analysis**

| Analyte   | Result  | RL    | MDL   | Units | DF | Prep     | Analyzed By  | Method                     | Prep Method              |
|-----------|---------|-------|-------|-------|----|----------|--------------|----------------------------|--------------------------|
| Aluminum  | 25.3 B  | 200   | 21    | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Antimony  | 3.3 U   | 6.0   | 3.3   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Arsenic   | 2.2 U   | 3.0   | 2.2   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Barium    | 1.7 B   | 200   | 0.44  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Beryllium | 0.25 U  | 1.0   | 0.25  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Cadmium   | 0.40 U  | 3.0   | 0.40  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Calcium   | 326 B   | 5000  | 33    | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Chromium  | 0.81 U  | 10    | 0.81  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Cobalt    | 0.69 U  | 50    | 0.69  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Copper    | 2.4 U   | 10    | 2.4   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Iron      | 12 U    | 100   | 12    | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Lead      | 2.3 U   | 3.0   | 2.3   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Magnesium | 85 U    | 5000  | 85    | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Manganese | 9.1 B   | 15    | 0.39  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Mercury   | 0.059 B | 0.20  | 0.047 | ug/l  | 1  | 02/01/17 | 02/01/17 JPM | I SW846 7470A <sup>1</sup> | SW846 7470A <sup>4</sup> |
| Nickel    | 0.76 U  | 10    | 0.76  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Potassium | 120 U   | 10000 | 120   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Selenium  | 4.1 U   | 10    | 4.1   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Silver    | 0.88 U  | 10    | 0.88  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Sodium    | 205 B   | 10000 | 24    | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Thallium  | 1.9 U   | 10    | 1.9   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Vanadium  | 0.66 U  | 50    | 0.66  | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |
| Zinc      | 1.3 U   | 20    | 1.3   | ug/l  | 1  | 01/31/17 | 02/01/17 DE  | SW846 6010C <sup>2</sup>   | SW846 3010A <sup>3</sup> |

(1) Instrument QC Batch: MA41282(2) Instrument QC Batch: MA41283(3) Prep QC Batch: MP98461(4) Prep QC Batch: MP98472





| _\$6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S_ ACCUTEST                         | NJ              | Ş                               | Ş<br>Ş                  | CHAIN 50 2235 Ro 61,732,329- | GS Accu                 | Dayton.            | NJ OSKI          | 0         |          |            |                     |               | May le    | 82           | 25               | 64             | 10 <u>C</u> .         | 01           | CS Acres | it Cristory | -                | (        |          |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|---------------------------------|-------------------------|------------------------------|-------------------------|--------------------|------------------|-----------|----------|------------|---------------------|---------------|-----------|--------------|------------------|----------------|-----------------------|--------------|----------|-------------|------------------|----------|----------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | , v                             | VEB I                   |                              |                         | about made or or   | 476              |           |          |            |                     |               |           |              |                  |                | mg to . "             |              |          | mer al      | <u> </u>         | ASPECTS  |          | Matrix Codes                                     |
| Francis Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lent / Reporting Informati          | on iturativests | GERTADOUR C                     | 570 HO \$40 H           | Project is                   | ntormet                 | lon "S             |                  | 7,943     | Per A    | 3:109      | 12.4 M              | 92.0%         | Nevita    | Requ         | eeted            | Analy          | nda ('a               | ee TE        | SICO     | DE ID       | ener)            |          |          | HINDIX COURS                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | AND THE PLANE   | Project Name.                   |                         |                              |                         |                    |                  |           |          |            |                     |               |           |              | [                | - 1            |                       | 1            |          | - 1         |                  | - 1      | 9        | OW - Drykerg Water                               |
| Company Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne<br>Mutholiand & Associates       |                 | Bristol-Myers                   | Squibb Manula           | cturing Co.                  | . Surfac                | s Soli S           | lampling         |           |          |            |                     |               | -         |              |                  | l              |                       |              | - 1      |             | - 1              | - 1      | - 1      | yvy - Water<br>SW - Surface Water                |
| Street Addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S STANDARD S NESOCIALIS             |                 | Street                          |                         |                              |                         | ***                |                  | _         |          |            |                     |               | 1         |              | ]                | .              | - 1                   | LIST         |          |             |                  |          | 18       | SO - Sot                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hester Avenue, Suite 417            | 7 Zn            | City                            |                         | State                        | Billing to<br>Corresing | Karnation<br>Name  | n ( If differ    | rant fro  | om Kay   | JON TO     |                     | _             | 1         | 1            |                  |                |                       | 불            | - 1      | - }         | - 1              | - 1      |          | SL Studge<br>SED-Sedment                         |
| Cay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scale                               |                 | 7 Humacao                       |                         | PR _                         |                         |                    |                  |           |          |            |                     |               | 4         |              |                  |                | 8                     | SEC          |          | - 1         |                  | - 1      |          | CI - Citier Liqued                               |
| Protect Conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | E-mail          | Project #                       |                         |                              | Servet Ad               | drees.             |                  |           |          |            |                     |               |           |              | .                |                | Ž.                    | ᇤ            | - 1      | - 1         | i                | ŀ        |          | APL - Air<br>SOL - Other Sold                    |
| Terry Ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ylor                                | Fax #           | Chent Purchase                  | Order #                 |                              | City                    |                    |                  | Б         | 244      |            | Σφ                  |               | 1         |              | 7                | Вепго(в)ругапа | Olbenz(a,h)anthracene | COMMENTS FOR |          | - 1         |                  |          | - 1.     | WP - Wipe<br>FB-Feld Blank<br>EB-Equipment Stank |
| 914-251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0400                               |                 |                                 |                         |                              | Ananhor                 |                    |                  | _         |          |            |                     | _             | -         | 占            | Š                | -              | 흏                     | SEE          | _ \      | ļ           | ĺ                | - 1      |          | RB- Rinse Blank<br>TB-Tru Bians                  |
| Sampler(a) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Phone #         | Project Manager<br>Terry Taylor |                         |                              |                         |                    |                  |           |          |            |                     |               | _ ≤       | PHOR1PESTICL | ABRZ70SL (SVOCs) | Ma             | 룕                     |              | PRG.     | l           |                  | - 1      |          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | Terry Laylor                    |                         | Collector                    | -                       |                    |                  |           | North-   | of present | ned Bed             | Tw I          | DIDISLAMA | 111          | 275              |                | BSIM +                | METALS       | METAL    | i           |                  | - 1      | Ī        |                                                  |
| sot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                 |                                 |                         | _                            | Barryand                | Mara               | موتاسز آن و      | J. 3      |          | MONE.      | D Not               |               | 3         | Ë            | ABi              | BSBM           | BSS                   | 量            | 뿔        |             |                  |          |          | LAB USE ONLY                                     |
| Sarryro P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field ID / Point of Collectio       | 181             | MECHADI VM #                    | Cate                    | Time                         | by                      |                    |                  | = .       |          | 4          |                     | +-+           | X         | V            | X                | X              | V                     |              |          |             |                  |          |          | E90                                              |
| 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TF98-1                              |                 |                                 | 1/25/17                 | 1045                         | 77                      | 50                 | 1                | ₩         | H        | 4          |                     | ╁┼            | 长         | ₩            | 5                | V              | Ż                     |              |          |             |                  |          |          | A35                                              |
| 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TF 85-2                             |                 | 1                               | 1/25/17                 | 1105                         | TT                      | 50                 | 4                | ₩         |          | 4          | +                   | ╂╌╂╌          | ₩         | 10           | 0                | <del> </del> ♦ | V                     |              |          |             |                  |          |          | 1/1142                                           |
| 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TF SS - 3                           | 3               |                                 | 1/25/17                 | 1140                         | 77                      | SO                 | 4                | ╁┼        | -        | _          | $\vdash$            | ┼┼            | 12        | +            | 10               | ₩              | <b>♦</b>              | ×            | V        |             |                  |          |          | 153                                              |
| u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BRSS-L                              |                 |                                 | V 25/17                 | 12.10                        | TT                      | 50                 | 3_               | 11        | +        | 3          | Н                   | ╌╢╌           | +-        |              | ÷                | <del> </del>   | 1                     | 长            | 文        |             |                  |          |          | F13 T1                                           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DRSS-ID                             | UP              |                                 | 1/25/17                 | 1215                         | TT                      | 50                 | 3                | H         | +        | 1 1        | H                   | ┼┼            |           | $\vdash$     | 1                |                | 1                     | H            | X        |             |                  |          |          | (4814)                                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRSS-2                              |                 |                                 | 1/25/17                 | 1410                         | TT                      | So                 | 3                | Н         | +        | 3          | ╀                   | ┾╾┼           | X         | 1            | 1                | 10             | ×,                    | 10           | /\       |             |                  |          | 7        |                                                  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B585-1                              |                 |                                 | 1/25/17                 | 1435                         | 77                      | 50                 | 4                | ⇊         | +        | 1          | 1                   | 1+            | 10        |              |                  | 12             | 10                    |              | -        | -           | -                | $\vdash$ |          |                                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B 555-2                             |                 |                                 | 1/25/17                 | 1525                         | 77                      | 50                 | 4                | $\sqcup$  | +        | 14         | H                   | ++            | 48        | 12           | X                | X              | <del>  </del>         | ×            | x        | -           |                  |          | 15-51    | 15/02                                            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FB-0125                             | 17              |                                 | 1/25/17                 | 0918                         | 77                      | FB                 | g.               | 3         | 11       | 4          | 1                   | +             | 1.X       | ·   X        | 1                | ÌŽ             | 10                    | 1 X          |          | MIT         | L A              | ESS      | MELT     | /30                                              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EB-0175                             | 17              | 1                               | Y25/17                  | 1456                         | TT                      | FB                 | 3                | 3         | 11       | 14         |                     | +             | X         | X            | 17               | X              | 17                    | 1 %          | X        | LPG         | ria v B          | 1,1      | 1-01-    | 1                                                |
| 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                 |                                 |                         |                              | <u> </u>                | <u> </u>           |                  |           | _        |            | Ц                   | 44            | 4-        | <b>_</b>     | 1                | ↓_             |                       | ₩            | -        | -           |                  | $\vdash$ | -        |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 |                                 |                         |                              |                         | 1_                 |                  |           |          | Ш          |                     |               | -         |              | _                |                |                       | Comm         | utomral" | / Specia    | ni Irmitri       | Ctions.  | 1959,000 | ana misona pilotajeverii.                        |
| 1257,484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Turnercurd Time / Business          | days)           |                                 | galger) wester          |                              | 1 222                   | Commo              | Cat<br>"A" leter |           |          | Inform     |                     | IŞP Cal       | agory A   | 3718161      | Mat              | als to         | consis                | t of :       |          |             |                  |          |          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | Approved By (SG                 | E Assistant PMI: I Date |                              | 155                     | Commo              | rctal "B" (      | Level     |          |            | NY#                 | <b>ISP</b> Сы | legory II |              | ALS              | b,As,E         | la,Ba.                | Cd,Cs        | Cr.Co    | Fe,Pt       | Mg,M             | n,NLK    | .Se.A    | g.Na,TI,V.Zn                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Std. 10 Business Days<br>5 Day RUSH |                 |                                 |                         |                              |                         |                    | ( Level 3        | +4)       |          |            |                     | a Form        |           |              | 114              | dop            | a 1                   | - Ive        | i+nh     | Are b       | مودامها ا        | 10.15    | :we      | 100                                              |
| 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 Day RUSH                          |                 |                                 |                         |                              |                         | NJ Redu<br>Cartime |                  |           |          |            | ] 055               |               |           |              | 1                | 4154           | 12.79                 | / <b>5</b> L |          |             |                  |          |          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Day RUSH<br>1 Day RUSH            |                 |                                 |                         |                              |                         | NJ Dat             | te of Knov       | en Qui    | diy Pr   | atacol /   | leport <sup>a</sup> | ng            | Burnet    |              | -                |                |                       | _            |          |             |                  |          |          |                                                  |
| Contract Con |                                     |                 |                                 |                         |                              | · .                     |                    | Orderl           | Gam to    | nf.A     |            |                     | Sar           | nple it   | ryento       | ry is v          | erifiec        | ј прог                | recei        | pt in th | ne Lat      | boratory         |          |          |                                                  |
| Energency & Kush TiA data available VIA tables Sample Custody must be documented by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                 |                                 | pelow er                | ch time                      | sampl                   | les ch             | ange p           | 285981    | sion, Ir | cludin     | court               | r deln        | ind-      | Des          |                  | 1000           | 700 - 27              | Kv.          | 200      | N 35259 Y   | CHINASSE ZARARAN |          |          |                                                  |
| Rely and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and by Barytin                      |                 | 6/17 1700                       | 1 6                     |                              | X                       |                    |                  | Reh<br>2  | ngus/m   | of By:     | 10                  | De            | 4         |              |                  | 172            | 70                    | 101          |          |             | /·V:-            | ٢        | щ        |                                                  |
| 1.///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ar Krill                            |                 | 0/11                            | Innumed to              |                              | 1                       |                    |                  | ftale     |          | et By:     | ī                   |               |           |              |                  | Date           | took:                 |              | Reser    | oud By:     |                  |          | pa .     |                                                  |
| ا المالية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and by torquer                      | Date Tree       |                                 | 3                       |                              |                         |                    |                  | [4<br>Cue | cody Se  | al a       |                     | 7             | 9760      | 4            | Pres             | Ď              | 74                    | <del>J</del> |          |             | Ont              | 2        | · C      | 1.2.1.4.2                                        |
| Balman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shed by                             | Date Tim        | K                               | Received By:            |                              |                         |                    |                  | 16        | 2,14     | 1,16       | اکار                | ei            | O Not     | ntpet        |                  | 197            | U                     | _            |          | _           | - 42             |          | <u>~</u> | 4.1-1 · · · · · · ·                              |

JC36373: Chain of Custody Page 1 of 4

#### **EXECUTIVE NARRATIVE**

SDG No:

JC36373

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

10

Location:

BMSMC, Humacao, PR

SUMMARY: Ten (10) samples were analyzed for selected SVOCs following method SW846-8270D and selected PAHs were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 —Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Maior:

None

Minor:

None

**Critical findings:** 

None

Major findings:

None

Minor findings:

1. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet. Results for were qualified as estimated (J or UJ) in affected samples.

No closing calibration verification included in data package. No action taken, professional judgment.

QC samples were not validated.

- 2. MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. MS/MSD % recovery and RPD apply to the unspiked sample; unspiked sample from another job. No qualification made based on MS/MSD recovery results.
- **3.** Sample JC36373-2 extracted outside holding time to confirm surrogate recovery. No action taken, professional judgment. Original sample extracted and analyzed within method recommended holding time.
- Surrogate standards biased high in sample JC36373-2 due to possible matrix interference. Confirmed by re-extraction outside holding time. No action taken, professional judgment.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

February 19 2017

## SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC36373-1

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

## METHOD: 8270D

| Analyte Name               | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol             | 71     | ug/kg | 1               | =        | U          | Yes        |
| 4-Chloro-3-methyl phenol   | 180    | ug/kg | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol         | 180    | ug/kg | 1               | =        | U          | Yes        |
| 2,4-Dimethylphenol         | 180    | ug/kg | 1               | =        | U          | Yes        |
| 2,4-Dinitrophenol          | 180    | ug/kg | 1               | =        | U          | Yes        |
| 4,6-Dinitro-o-cresol       | 180    | ug/kg | 1               | -        | U          | Yes        |
| 2-Methylphenol             | 71     | ug/kg | 1               | -        | U          | Yes        |
| 3&4-Methylphenol           | 71     | ug/kg | 1               | =        | U          | Yes        |
| 2-Nitrophenol              | 180    | ug/kg | 1               | -        | U          | Yes        |
| 4-Nitrophenol              | 350    | ug/kg | 1               | =        | U          | Yes        |
| Pentachlorophenol          | 140    | ug/kg | 1               | =        | U          | Yes        |
| Phenol                     | 71     | ug/kg | 1               | =        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol  | 180    | ug/kg | 1               | =        | U          | Yes        |
| 2,4,5-Trichlorophenol      | 180    | ug/kg | 1               | =        | U          | Yes        |
| 2,4,6-Trichlorophenol      | 180    | ug/kg | 1               | -        | U          | Yes        |
| Acenaphthene               | 35     | ug/kg | 1               | -        | U          | Yes        |
| Acenaphthylene             | 35     | ug/kg | 1               | -        | U          | Yes        |
| Acetophenone               | 180    | ug/kg | 1               | -        | U          | Yes        |
| Anthracene                 | 35     | ug/kg | 1               | -        | U          | Yes        |
| Atrazine                   | 71     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(a)anthracene         | 35     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene       | 35     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene       | 35     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene       | 35     | ug/kg | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether | 71     | ug/kg | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate     | 71     | ug/kg | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl              | 71     | ug/kg | 1               | -        | U          | Yes        |
| Benzaldehyde               | 180    | ug/kg | 1               | -        | U          | Yes        |
| 2-Chloronaphthalene        | 71     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chloroaniline            | 180    | ug/kg | 1               | -        | U          | Yes        |
| Carbazole                  | 71     | ug/kg | 1               | -        | U          | Yes        |
| Caprolactam                | 71     | ug/kg | 1               | -        | U          | Yes        |
| Chrysene                   | 35     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane | 71     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether    | 71     | ug/kg | 1               | -        | U          | Yes        |

| bis(2-Chloroisopropyl)ether | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
|-----------------------------|-----|-------|---|---|---|-----|--|--|--|--|--|
| 4-Chlorophenyl phenyl ether | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 2,4-Dinitrotoluene          | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 2,6-Dinitrotoluene          | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 3,3'-Dichlorobenzidine      | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 1,4-Dioxane                 | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Dibenzofuran                | 71  | ug/kg | 1 | _ | U | Yes |  |  |  |  |  |
| Di-n-butyl phthalate        | 71  | ug/kg | 1 | _ | U | Yes |  |  |  |  |  |
| Di-n-octyl phthalate        | 71  | ug/kg | 1 | _ | U | Yes |  |  |  |  |  |
| Diethyl phthalate           | 71  | ug/kg | 1 | _ | U | Yes |  |  |  |  |  |
| Dimethyl phthalate          | 71  | ug/kg | 1 | _ | U | Yes |  |  |  |  |  |
| bis(2-Ethylhexyl)phthalate  | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Fluoranthene                | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Fluorene                    | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Hexachlorobenzene           | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Hexachlorobutadiene         | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Hexachlorocyclopentadiene   | 350 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Hexachloroethane            | 180 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene      | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Isophorone                  | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 1-Methylnaphthalene         | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 2-Methylnaphthalene         | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 2-Nitroaniline              | 180 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 3-Nitroaniline              | 180 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 4-Nitroaniline              | 180 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Naphthalene                 | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Nitrobenzene                | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| N-Nitroso-di-n-propylamine  | 71  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Nitrosodiphenylamine        | 180 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Phenanthrene                | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Pyrene                      | 35  | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| 1,2,4,5-Tetrachlorobenzene  | 180 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| METHOD: 8270D (SIM)         |     |       |   |   |   |     |  |  |  |  |  |
| Benzo(a)pyrene              | 3.5 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
| Dibenzo(a,h)anthracene      | 3.5 | ug/kg | 1 | - | U | Yes |  |  |  |  |  |
|                             |     |       |   |   |   |     |  |  |  |  |  |

Sample ID: JC36373-2

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

## METHOD: 8270D

|                                | ·      |         |                 |          |            |            |
|--------------------------------|--------|---------|-----------------|----------|------------|------------|
| Analyte Name                   | Result | Units [ | Dilution Factor | Lab Flag | Validation | Reportable |
| 2-Chlorophenol                 | 73     | ug/kg   | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol       | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol             | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol             | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol              | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol           | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 2-Methylphenol                 | 73     | ug/kg   | 1               | -        | U          | Yes        |
| 3&4-Methylphenol               | 73     | ug/kg   | 1               | -        | U          | Yes        |
| 2-Nitrophenol                  | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 4-Nitrophenol                  | 360    | ug/kg   | 1               | -        | U          | Yes        |
| Pentachlorophenol              | 150    | ug/kg   | 1               | -        | U          | Yes        |
| Phenol                         | 73     | ug/kg   | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol      | 180    | ug/kg   | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol          | 180    | ug/kg   | 1               | =        | U          | Yes        |
| 2,4,6-Trichlorophenol          | 180    | ug/kg   | 1               | =        | U          | Yes        |
| Acenaphthene                   | 36     | ug/kg   | 1               | =        | U          | Yes        |
| Acenaphthylene                 | 36     | ug/kg   | 1               | -        | U          | Yes        |
| Acetophenone                   | 180    | ug/kg   | 1               | -        | U          | Yes        |
| Anthracene                     | 36     | ug/kg   | 1               | -        | U          | Yes        |
| Atrazine                       | 71     | ug/kg   | 1               | -        | U          | Yes        |
| Benzo(a)anthracene             | 22.5   | ug/kg   | 1               | J        | J          | Yes        |
| Benzo(b)fluoranthene           | 31.1   | ug/kg   | 1               | J        | J          | Yes        |
| Benzo(g,h,i)perylene           | 18.9   | ug/kg   | 1               | J        | J          | Yes        |
| Benzo(k)fluoranthene           | 36     | ug/kg   | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether     | 73     | ug/kg   | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate         | 73     | ug/kg   | 1               | -        | U          | Yes        |
| 1,1'-Biphenyl                  | 73     | ug/kg   | 1               | -        | U          | Yes        |
| Benzaldehyde                   | 180    | ug/kg   | 1               | =        | U          | Yes        |
| 2-Chloronaphthalene            | 73     | ug/kg   | 1               | =        | U          | Yes        |
| 4-Chloroaniline                | 180    | ug/kg   | 1               | =        | U          | Yes        |
| Carbazole                      | 73     | ug/kg   | 1               | =        | U          | Yes        |
| Caprolactam                    | 73     | ug/kg   | 1               | =        | U          | Yes        |
| Chrysene                       | 22.6   | ug/kg   | 1               | J        | J          | Yes        |
| bis(2-Chloroethoxy)methane     | 73     | ug/kg   | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether        | 73     | ug/kg   | 1               | -        | U          | Yes        |
| bis (2-Chlorois opropyl) ether | 73     | ug/kg   | 1               | -        | U          | Yes        |
| 4-Chlorophenyl phenyl ether    | 73     | ug/kg   | 1               | -        | U          | Yes        |

| 2,4-Dinitrotoluene         | 36   | ug/kg | 1 | - | U | Yes |
|----------------------------|------|-------|---|---|---|-----|
| 2,6-Dinitrotoluene         | 36   | ug/kg | 1 | - | U | Yes |
| 3,3'-Dichlorobenzidine     | 73   | ug/kg | 1 | - | U | Yes |
| 1,4-Dioxane                | 36   | ug/kg | 1 | - | U | Yes |
| Dibenzofuran               | 73   | ug/kg | 1 | - | U | Yes |
| Di-n-butyl phthalate       | 73   | ug/kg | 1 | - | U | Yes |
| Di-n-octyl phthalate       | 73   | ug/kg | 1 | - | U | Yes |
| Diethyl phthalate          | 73   | ug/kg | 1 | - | U | Yes |
| Dimethyl phthalate         | 73   | ug/kg | 1 | - | U | Yes |
| bis(2-Ethylhexyl)phthalate | 53.9 | ug/kg | 1 | J | J | Yes |
| Fluoranthene               | 37.0 | ug/kg | 1 | - | - | Yes |
| Fluorene                   | 36   | ug/kg | 1 | = | U | Yes |
| Hexachlorobenzene          | 73   | ug/kg | 1 | = | U | Yes |
| Hexachlorobutadiene        | 36   | ug/kg | 1 | = | U | Yes |
| Hexachlorocyclopentadiene  | 360  | ug/kg | 1 | = | U | Yes |
| Hexachloroethane           | 180  | ug/kg | 1 | = | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 21.1 | ug/kg | 1 | J | J | Yes |
| Isophorone                 | 73   | ug/kg | 1 | _ | U | Yes |
| 1-Methylnaphthalene        | 73   | ug/kg | 1 | _ | U | Yes |
| 2-Methylnaphthalene        | 73   | ug/kg | 1 | _ | U | Yes |
| 2-Nitroaniline             | 180  | ug/kg | 1 | _ | U | Yes |
| 3-Nitroaniline             | 180  | ug/kg | 1 | _ | U | Yes |
| 4-Nitroaniline             | 180  | ug/kg | 1 | _ | U | Yes |
| Naphthalene                | 36   | ug/kg | 1 | - | U | Yes |
| Nitrobenzene               | 73   | ug/kg | 1 | - | U | Yes |
| N-Nitroso-di-n-propylamine | 73   | ug/kg | 1 | _ | U | Yes |
| Nitrosodiphenylamine       | 180  | ug/kg | 1 | _ | U | Yes |
| Phenanthrene               | 17.2 | ug/kg | 1 | J | J | Yes |
| Pyrene                     | 33.8 | ug/kg | 1 | J | J | Yes |
| 1,2,4,5-Tetrachlorobenzene | 180  | ug/kg | 1 | - | U | Yes |
|                            |      |       |   |   |   |     |

METHOD: 8270D (SIM)

| Benzo(a)pyrene         | 19.7 | ug/kg | 1 | - | - | Yes |
|------------------------|------|-------|---|---|---|-----|
| Dibenzo(a,h)anthracene | 3.6  | ug/kg | 1 | - | U | Yes |

Sample ID: JC36373-3

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

## METHOD: 8270D

| Analyte Name                   | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|--------------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol                 | 69     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol       | 170    | ug/kg | 1               | _        | U          | Yes        |
| 2,4-Dichlorophenol             | 170    | ug/kg | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol             | 170    | ug/kg | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol              | 170    | ug/kg | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol           | 170    | ug/kg | 1               | =        | U          | Yes        |
| 2-Methylphenol                 | 69     | ug/kg | 1               | =        | U          | Yes        |
| 3&4-Methylphenol               | 69     | ug/kg | 1               | =        | U          | Yes        |
| 2-Nitrophenol                  | 170    | ug/kg | 1               | =        | U          | Yes        |
| 4-Nitrophenol                  | 350    | ug/kg | 1               | -        | U          | Yes        |
| Pentachlorophenol              | 140    | ug/kg | 1               | -        | U          | Yes        |
| Phenol                         | 59.9   | ug/kg | 1               | J        | J          | Yes        |
| 2,3,4,6-Tetrachlorophenol      | 170    | ug/kg | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol          | 170    | ug/kg | 1               | =        | U          | Yes        |
| 2,4,6-Trichlorophenol          | 170    | ug/kg | 1               | =        | U          | Yes        |
| Acenaphthene                   | 35     | ug/kg | 1               | =        | U          | Yes        |
| Acenaphthylene                 | 35     | ug/kg | 1               | -        | U          | Yes        |
| Acetophenone                   | 170    | ug/kg | 1               | -        | U          | Yes        |
| Anthracene                     | 35     | ug/kg | 1               | -        | U          | Yes        |
| Atrazine                       | 69     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(a)anthracene             | 35     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(b)fluoranthene           | 35     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene           | 35     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene           | 35     | ug/kg | 1               | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether     | 69     | ug/kg | 1               | -        | U          | Yes        |
| Butyl benzyl phthalate         | 69     | ug/kg | 1               | =        | U          | Yes        |
| 1,1'-Biphenyl                  | 69     | ug/kg | 1               | =        | U          | Yes        |
| Benzaldehyde                   | 23.5   | ug/kg | 1               | J        | J          | Yes        |
| 2-Chloronaphthalene            | 69     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chloroaniline                | 170    | ug/kg | 1               | -        | U          | Yes        |
| Carbazole                      | 69     | ug/kg | 1               | -        | U          | Yes        |
| Caprolactam                    | 69     | ug/kg | 1               | -        | U          | Yes        |
| Chrysene                       | 35     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane     | 69     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether        | 69     | ug/kg | 1               | -        | U          | Yes        |
| bis (2-Chlorois opropyl) ether | 69     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chlorophenyl phenyl ether    | 69     | ug/kg | 1               | -        | U          | Yes        |

| 2,4-Dinitrotoluene             | 35  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
|--------------------------------|-----|---------|----------|---|---|-----|--|--|--|--|--|
| 2,6-Dinitrotoluene             | 35  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| 3,3'-Dichlorobenzidine         | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| 1,4-Dioxane                    | 35  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Dibenzofuran                   | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Di-n-butyl phthalate           | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Di-n-octyl phthalate           | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Diethyl phthalate              | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Dimethyl phthalate             | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| bis(2-Ethylhexyl)phthalate     | 146 | ug/kg   | 1        | _ | - | Yes |  |  |  |  |  |
| Fluoranthene                   | 35  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Fluorene                       | 35  | ug/kg   | 1        | = | U | Yes |  |  |  |  |  |
| Hexachlorobenzene              | 69  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Hexachlorobutadiene            | 35  | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Hexachlorocyclopentadiene      | 350 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Hexachloroethane               | 170 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene         | 35  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Isophorone                     | 69  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| 1-Methylnaphthalene            | 69  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| 2-Methylnaphthalene            | 69  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| 2-Nitroaniline                 | 170 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| 3-Nitroaniline                 | 170 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| 4-Nitroaniline                 | 170 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Naphthalene                    | 35  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Nitrobenzene                   | 69  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| N-Nitroso-di-n-propylamine     | 69  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Nitrosodiphenylamine           | 170 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Phenanthrene                   | 35  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| Pyrene                         | 35  | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
| 1,2,4,5-Tetrachlorobenzene     | 170 | ug/kg   | 1        | - | U | Yes |  |  |  |  |  |
|                                |     |         |          |   |   |     |  |  |  |  |  |
| METHOD: 8270D (SIM)            |     |         |          |   |   |     |  |  |  |  |  |
| Benzo(a)pyrene                 | 3.5 | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| Dibenzo(a,h)anthracene         | 3.5 | ug/kg   | 1        | _ | U | Yes |  |  |  |  |  |
| 5.55.1120(a).11/a11till accine | 5.5 | 49/ 1/8 | <b>-</b> |   | 9 | 103 |  |  |  |  |  |

Sample ID: JC36373-4

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8270D

|   | METHOD:                     | -      |             |                 |          |   |     |
|---|-----------------------------|--------|-------------|-----------------|----------|---|-----|
|   | Analyte Name                | Result |             | Dilution Factor | Lab Flag |   |     |
|   | 2-Chlorophenol              | 74     | ug/kg       | 1               | -        | U | Yes |
|   | 4-Chloro-3-methyl phenol    | 180    | ug/kg       | 1               | -        | U | Yes |
|   | 2,4-Dichlorophenol          | 180    | ug/kg       | 1               | -        | U | Yes |
| 2 | 2,4-Dimethylphenol          | 180    | ug/kg       | 1               | =        | U | Yes |
| 2 | 2,4-Dinitrophenol           | 180    | ug/kg       | 1               | -        | U | Yes |
|   | 1,6-Dinitro-o-cresol        | 180    | ug/kg       | 1               | -        | U | Yes |
| 2 | 2-Methylphenol              | 74     | ug/kg       | 1               | -        | U | Yes |
| 3 | 3&4-Methylphenol            | 74     | ug/kg       | 1               | -        | U | Yes |
| 2 | 2-Nitrophenol               | 180    | ug/kg       | 1               | -        | U | Yes |
| 4 | 4-Nitrophenol               | 370    | ug/kg       | 1               | -        | U | Yes |
| I | Pentachlorophenol           | 150    | ug/kg       | 1               | =        | U | Yes |
| ı | Phenol                      | 74     | ug/kg       | 1               | -        | U | Yes |
| 2 | 2,3,4,6-Tetrachlorophenol   | 180    | ug/kg       | 1               | -        | U | Yes |
| 2 | 2,4,5-Trichlorophenol       | 180    | ug/kg       | 1               | -        | U | Yes |
| 2 | 2,4,6-Trichlorophenol       | 180    | ug/kg       | 1               | -        | U | Yes |
| / | Acenaphthene                | 37     | ug/kg       | 1               | -        | U | Yes |
| / | Acenaphthylene              | 37     | ug/kg       | 1               | -        | U | Yes |
| / | Acetophenone                | 180    | ug/kg       |                 | -        | U | Yes |
| / | Anthracene                  | 36     | ug/kg       | 1               | -        | U | Yes |
| / | Atrazine                    | 71     | ug/kg       | 1               | -        | U | Yes |
| ı | Benzo(a)anthracene          | 37     | ug/kg       | 1               | -        | U | Yes |
| ı | Benzo(b)fluoranthene        | 37     | ug/kg       | 1               | -        | U | Yes |
| ı | Benzo(g,h,i)perylene        | 37     | ug/kg       | 1               | -        | U | Yes |
| ı | Benzo(k)fluoranthene        | 37     | ug/kg       | 1               | -        | U | Yes |
| 4 | 1-Bromophenyl phenyl ether  | 74     | ug/kg       |                 | -        | U | Yes |
| ı | Butyl benzyl phthalate      | 74     | ug/kg       | 1               | -        | U | Yes |
| - | 1,1'-Biphenyl               | 74     | ug/kg       |                 | -        | U | Yes |
| ı | Benzaldehyde                | 26.0   | ug/kg       | 1               | J        | J | Yes |
| 2 | 2-Chloronaphthalene         | 74     | ug/kg       | 1               | -        | U | Yes |
| 4 | 1-Chloroaniline             | 180    | ug/kg       | 1               | -        | U | Yes |
| ( | Carbazole                   | 74     | ug/kg       | 1               | -        | U | Yes |
| ( | Caprolactam                 | 74     | ug/kg       | 1               | -        | U | Yes |
| ( | Chrysene                    | 37     | ug/kg       | 1               | -        | U | Yes |
| ŀ | ois(2-Chloroethoxy)methane  | 74     | ug/kg       | 1               | =        | U | Yes |
|   | ois(2-Chloroethyl)ether     | 74     | ug/kg       | 1               | -        | U | Yes |
| I | ois(2-Chloroisopropyl)ether | 74     | ug/kg       | 1               | -        | U | Yes |
|   | 4-Chlorophenyl phenyl ether | 74     | ug/kg       | 1               | -        | U | Yes |
|   | 2,4-Dinitrotoluene          | 37     | ug/kg       | 1               | -        | U | Yes |
|   | 2,6-Dinitrotoluene          | 37     | ug/kg       |                 | -        | U | Yes |
|   |                             |        | J. <b>U</b> |                 |          |   |     |

| 3,3'-Dichlorobenzidine     | 74         | ug/kg       | 1 | - | U | Yes |
|----------------------------|------------|-------------|---|---|---|-----|
| 1,4-Dioxane                | 37         | ug/kg       | 1 | = | U | Yes |
| Dibenzofuran               | 74         | ug/kg       | 1 | = | U | Yes |
| Di-n-butyl phthalate       | 74         | ug/kg       | 1 | = | U | Yes |
| Di-n-octyl phthalate       | 74         | ug/kg       | 1 | = | U | Yes |
| Diethyl phthalate          | 74         | ug/kg       | 1 | = | U | Yes |
| Dimethyl phthalate         | 74         | ug/kg       | 1 | - | U | Yes |
| bis(2-Ethylhexyl)phthalate | 74         | ug/kg       | 1 | = | U | Yes |
| Fluoranthene               | 37         | ug/kg       | 1 | = | U | Yes |
| Fluorene                   | 37         | ug/kg       | 1 | = | U | Yes |
| Hexachlorobenzene          | 74         | ug/kg       | 1 | = | U | Yes |
| Hexachlorobutadiene        | 37         | ug/kg       | 1 | - | U | Yes |
| Hexachlorocyclopentadiene  | 370        | ug/kg       | 1 | - | U | Yes |
| Hexachloroethane           | 180        | ug/kg       | 1 | = | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 37         | ug/kg       | 1 | - | U | Yes |
| Isophorone                 | 74         | ug/kg       | 1 | = | U | Yes |
| 1-Methylnaphthalene        | 74         | ug/kg       | 1 | = | U | Yes |
| 2-Methylnaphthalene        | 74         | ug/kg       | 1 | - | U | Yes |
| 2-Nitroaniline             | 180        | ug/kg       | 1 | = | U | Yes |
| 3-Nitroaniline             | 180        | ug/kg       | 1 | = | U | Yes |
| 4-Nitroaniline             | 180        | ug/kg       | 1 | = | U | Yes |
| Naphthalene                | 37         | ug/kg       | 1 | = | U | Yes |
| Nitrobenzene               | 74         | ug/kg       | 1 | = | U | Yes |
| N-Nitroso-di-n-propylamine | 74         | ug/kg       | 1 | = | U | Yes |
| Nitrosodiphenylamine       | 180        | ug/kg       | 1 | = | U | Yes |
| Phenanthrene               | 37         | ug/kg       | 1 | - | U | Yes |
| Pyrene                     | 37         | ug/kg       | 1 | = | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 180        | ug/kg       | 1 | - | U | Yes |
|                            |            |             |   |   |   |     |
| METHOD:                    | 8270D (SII | <b>∨</b> I) |   |   |   |     |
| Benzo(a)pyrene             | 4.69       | ug/kg       | 1 | - | - | Yes |
| Dibenzo(a,h)anthracene     | 3.7        | ug/kg       | 1 | - | U | Yes |
|                            |            |             |   |   |   |     |

Sample ID: JC36373-5

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8270D

| Analyte Name                | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-----------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol              | 75     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 190    | ug/kg | 1               | =        | U          | Yes        |
| 2,4-Dichlorophenol          | 190    | ug/kg | 1               | =        | U          | Yes        |
| 2,4-Dimethylphenol          | 190    | ug/kg | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol           | 190    | ug/kg | 1               | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol        | 190    | ug/kg | 1               | -        | U          | Yes        |
| 2-Methylphenol              | 75     | ug/kg | 1               | -        | U          | Yes        |
| 3&4-Methylphenol            | 75     | ug/kg | 1               | -        | U          | Yes        |
| 2-Nitrophenol               | 190    | ug/kg | 1               | -        | U          | Yes        |
| 4-Nitrophenol               | 370    | ug/kg | 1               | -        | U          | Yes        |
| Pentachlorophenol           | 150    | ug/kg | 1               | -        | U          | Yes        |
| Phenol                      | 75     | ug/kg | 1               | -        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 190    | ug/kg | 1               | -        | U          | Yes        |
| 2,4,5-Trichlorophenol       | 190    | ug/kg | 1               | -        | U          | Yes        |
| 2,4,6-Trichlorophenol       | 190    | ug/kg | 1               | -        | U          | Yes        |
| Acenaphthene                | 37     | ug/kg | 1               | -        | U          | Yes        |
| Acenaphthylene              | 37     | ug/kg | 1               | -        | U          | Yes        |
| Acetophenone                | 190    | ug/kg | 1               | -        | U          | Yes        |
| Anthracene                  | 37     | ug/kg | 1               | -        | U          | Yes        |
| Atrazine                    | 75     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(a)anthracene          | 37     | ug/kg | 1               | =        | U          | Yes        |
| Benzo(b)fluoranthene        | 37     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 37     | ug/kg | 1               | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 37     | ug/kg | 1               | =        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 75     | ug/kg | 1               | =        | U          | Yes        |
| Butyl benzyl phthalate      | 75     | ug/kg | 1               | =        | U          | Yes        |
| 1,1'-Biphenyl               | 75     | ug/kg | 1               | -        | U          | Yes        |
| Benzaldehyde                | 41.8   | ug/kg | 1               | J        | J          | Yes        |
| 2-Chloronaphthalene         | 75     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chloroaniline             | 190    | ug/kg | 1               | -        | U          | Yes        |
| Carbazole                   | 75     | ug/kg | 1               | -        | U          | Yes        |
| Caprolactam                 | 75     | ug/kg | 1               | -        | U          | Yes        |
| Chrysene                    | 37     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 75     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 75     | ug/kg | 1               | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 75     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chlorophenyl phenyl ether | 75     | ug/kg | 1               | -        | U          | Yes        |
| 2,4-Dinitrotoluene          | 37     | ug/kg | 1               | -        | U          | Yes        |
| 2,6-Dinitrotoluene          | 37     | ug/kg | 1               | -        | U          | Yes        |
| 3,3'-Dichlorobenzidine      | 75     | ug/kg | 1               | -        | U          | Yes        |
| 1,4-Dioxane                 | 37     | ug/kg | 1               | -        | U          | Yes        |

| Dibenzofuran               | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
|----------------------------|--------------------|-------|---|---|--------|-----|--|--|--|
| Di-n-butyl phthalate       | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Di-n-octyl phthalate       | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Diethyl phthalate          | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Dimethyl phthalate         | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| bis(2-Ethylhexyl)phthalate | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Fluoranthene               | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Fluorene                   | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Hexachlorobenzene          | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Hexachlorobutadiene        | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Hexachlorocyclopentadiene  | 370                | ug/kg | 1 | - | U      | Yes |  |  |  |
| Hexachloroethane           | 190                | ug/kg | 1 | - | U      | Yes |  |  |  |
| Indeno(1,2,3-cd)pyrene     | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Isophorone                 | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| 1-Methylnaphthalene        | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| 2-Methylnaphthalene        | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| 2-Nitroaniline             | 190                | ug/kg | 1 | - | U      | Yes |  |  |  |
| 3-Nitroaniline             | 190                | ug/kg | 1 | - | U      | Yes |  |  |  |
| 4-Nitroaniline             | 190                | ug/kg | 1 | - | U      | Yes |  |  |  |
| Naphthalene                | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Nitrobenzene               | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| N-Nitroso-di-n-propylamine | 75                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Nitrosodiphenylamine       | 190                | ug/kg | 1 | - | U      | Yes |  |  |  |
| Phenanthrene               | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| Pyrene                     | 37                 | ug/kg | 1 | - | U      | Yes |  |  |  |
| 1,2,4,5-Tetrachlorobenzene | 190                | ug/kg | 1 | - | U      | Yes |  |  |  |
|                            |                    |       |   |   |        |     |  |  |  |
| METHOD: 8270D (SIM)        |                    |       |   |   |        |     |  |  |  |
|                            | 82700 (SII<br>4.17 | •     | 1 |   |        | Yes |  |  |  |
| Benzo(a)pyrene             |                    | ug/kg | 1 | - | -<br>U |     |  |  |  |
| Dibenzo(a,h)anthracene     | 3.7                | ug/kg | 1 | - | U      | Yes |  |  |  |

Sample ID: JC36373-6

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8270D

| Analyte Name                | Result | Units Di | lution Factor | Lab Flag | Validation | Reportable |
|-----------------------------|--------|----------|---------------|----------|------------|------------|
| 2-Chlorophenol              | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol    | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 2,4-Dichlorophenol          | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 2,4-Dimethylphenol          | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 2,4-Dinitrophenol           | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 4,6-Dinitro-o-cresol        | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 2-Methylphenol              | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 3&4-Methylphenol            | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 2-Nitrophenol               | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 4-Nitrophenol               | 420    | ug/kg    | 1             | -        | U          | Yes        |
| Pentachlorophenol           | 170    | ug/kg    | 1             | =        | U          | Yes        |
| Phenol                      | 83     | ug/kg    | 1             | =        | U          | Yes        |
| 2,3,4,6-Tetrachlorophenol   | 210    | ug/kg    | 1             | =        | U          | Yes        |
| 2,4,5-Trichlorophenol       | 210    | ug/kg    | 1             | -        | U          | Yes        |
| 2,4,6-Trichlorophenol       | 210    | ug/kg    | 1             | -        | U          | Yes        |
| Acenaphthene                | 42     | ug/kg    | 1             | -        | U          | Yes        |
| Acenaphthylene              | 42     | ug/kg    | 1             | -        | U          | Yes        |
| Acetophenone                | 210    | ug/kg    | 1             | -        | U          | Yes        |
| Anthracene                  | 36     | ug/kg    | 1             | -        | U          | Yes        |
| Atrazine                    | 83     | ug/kg    | 1             | -        | U          | Yes        |
| Benzo(a)anthracene          | 42     | ug/kg    | 1             | -        | U          | Yes        |
| Benzo(b)fluoranthene        | 42     | ug/kg    | 1             | -        | U          | Yes        |
| Benzo(g,h,i)perylene        | 42     | ug/kg    | 1             | -        | U          | Yes        |
| Benzo(k)fluoranthene        | 42     | ug/kg    | 1             | -        | U          | Yes        |
| 4-Bromophenyl phenyl ether  | 83     | ug/kg    | 1             | -        | U          | Yes        |
| Butyl benzyl phthalate      | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 1,1'-Biphenyl               | 83     | ug/kg    | 1             | -        | U          | Yes        |
| Benzaldehyde                | 39.1   | ug/kg    | 1             | J        | J          | Yes        |
| 2-Chloronaphthalene         | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 4-Chloroaniline             | 210    | ug/kg    | 1             | -        | U          | Yes        |
| Carbazole                   | 83     | ug/kg    | 1             | -        | U          | Yes        |
| Caprolactam                 | 83     | ug/kg    | 1             | -        | U          | Yes        |
| Chrysene                    | 42     | ug/kg    | 1             | -        | U          | Yes        |
| bis(2-Chloroethoxy)methane  | 83     | ug/kg    | 1             | -        | U          | Yes        |
| bis(2-Chloroethyl)ether     | 83     | ug/kg    | 1             | -        | U          | Yes        |
| bis(2-Chloroisopropyl)ether | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 4-Chlorophenyl phenyl ether | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 2,4-Dinitrotoluene          | 42     | ug/kg    | 1             | =        | U          | Yes        |
| 2,6-Dinitrotoluene          | 42     | ug/kg    | 1             | -        | U          | Yes        |
| 3,3'-Dichlorobenzidine      | 83     | ug/kg    | 1             | -        | U          | Yes        |
| 1,4-Dioxane                 | 42     | ug/kg    | 1             | -        | U          | Yes        |
| Dibenzofuran                | 83     | ug/kg    | 1             | -        | U          | Yes        |
| Di-n-butyl phthalate        | 83     | ug/kg    | 1             | -        | U          | Yes        |

| Di-n-octyl phthalate       | 83         | ug/kg       | 1 | - | U | Yes |
|----------------------------|------------|-------------|---|---|---|-----|
| Diethyl phthalate          | 83         | ug/kg       | 1 | - | U | Yes |
| Dimethyl phthalate         | 83         | ug/kg       | 1 | - | U | Yes |
| bis(2-Ethylhexyl)phthalate | 83         | ug/kg       | 1 | - | U | Yes |
| Fluoranthene               | 42         | ug/kg       | 1 | - | U | Yes |
| Fluorene                   | 42         | ug/kg       | 1 | - | U | Yes |
| Hexachlorobenzene          | 83         | ug/kg       | 1 | - | U | Yes |
| Hexachlorobutadiene        | 42         | ug/kg       | 1 | - | U | Yes |
| Hexachlorocyclopentadiene  | 420        | ug/kg       | 1 | - | U | Yes |
| Hexachloroethane           | 210        | ug/kg       | 1 | - | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 42         | ug/kg       | 1 | - | U | Yes |
| Isophorone                 | 83         | ug/kg       | 1 | - | U | Yes |
| 1-Methylnaphthalene        | 83         | ug/kg       | 1 | - | U | Yes |
| 2-Methylnaphthalene        | 83         | ug/kg       | 1 | - | U | Yes |
| 2-Nitroaniline             | 210        | ug/kg       | 1 | - | U | Yes |
| 3-Nitroaniline             | 210        | ug/kg       | 1 | - | U | Yes |
| 4-Nitroaniline             | 210        | ug/kg       | 1 | - | U | Yes |
| Naphthalene                | 42         | ug/kg       | 1 | - | U | Yes |
| Nitrobenzene               | 83         | ug/kg       | 1 | - | U | Yes |
| N-Nitroso-di-n-propylamine | 83         | ug/kg       | 1 | - | U | Yes |
| Nitrosodiphenylamine       | 210        | ug/kg       | 1 | - | U | Yes |
| Phenanthrene               | 42         | ug/kg       | 1 | - | U | Yes |
| Pyrene                     | 42         | ug/kg       | 1 | - | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 210        | ug/kg       | 1 | - | U | Yes |
|                            |            |             |   |   |   |     |
| METHOD: 8                  | 3270D (SII | <b>√</b> I) |   |   |   |     |
| Benzo(a)pyrene             | 7.74       | ug/kg       | 1 | - | - | Yes |
| Dibenzo(a,h)anthracene     | 4.2        | ug/kg       | 1 | - | U | Yes |

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8270D

| Analyte Name   | Result | Units Dilut | ion Factor | Lab Flag | Validation | Reportable |
|----------------|--------|-------------|------------|----------|------------|------------|
| 2-Chlorophenol | 69     | ug/kg       | 1          | =.       | U          | Yes        |

| 4-Chloro-3-methyl phenol       | 170  | ug/kg | 1 | - | U | Yes |
|--------------------------------|------|-------|---|---|---|-----|
| 2,4-Dichlorophenol             | 170  | ug/kg | 1 | - | U | Yes |
| 2,4-Dimethylphenol             | 170  | ug/kg | 1 | - | U | Yes |
| 2,4-Dinitrophenol              | 170  | ug/kg | 1 | - | U | Yes |
| 4,6-Dinitro-o-cresol           | 170  | ug/kg | 1 | - | U | Yes |
| 2-Methylphenol                 | 69   | ug/kg | 1 | - | U | Yes |
| 3&4-Methylphenol               | 69   | ug/kg | 1 | = | U | Yes |
| 2-Nitrophenol                  | 170  | ug/kg | 1 | - | U | Yes |
| 4-Nitrophenol                  | 350  | ug/kg | 1 | = | U | Yes |
| Pentachlorophenol              | 140  | ug/kg | 1 | - | U | Yes |
| Phenol                         | 69   | ug/kg | 1 | - | U | Yes |
| 2,3,4,6-Tetrachlorophenol      | 170  | ug/kg | 1 | - | U | Yes |
| 2,4,5-Trichlorophenol          | 170  | ug/kg | 1 | - | U | Yes |
| 2,4,6-Trichlorophenol          | 170  | ug/kg | 1 | - | U | Yes |
| Acenaphthene                   | 35   | ug/kg | 1 | - | U | Yes |
| Acenaphthylene                 | 35   | ug/kg | 1 | - | U | Yes |
| Acetophenone                   | 170  | ug/kg | 1 | - | U | Yes |
| Anthracene                     | 35   | ug/kg | 1 | - | U | Yes |
| Atrazine                       | 69   | ug/kg | 1 | - | U | Yes |
| Benzo(a)anthracene             | 35   | ug/kg | 1 | - | U | Yes |
| Benzo(b)fluoranthene           | 35   | ug/kg | 1 | - | U | Yes |
| Benzo(g,h,i)perylene           | 35   | ug/kg | 1 | - | U | Yes |
| Benzo(k)fluoranthene           | 35   | ug/kg | 1 | - | U | Yes |
| 4-Bromophenyl phenyl ether     | 69   | ug/kg | 1 | - | U | Yes |
| Butyl benzyl phthalate         | 69   | ug/kg | 1 | = | U | Yes |
| 1,1'-Biphenyl                  | 69   | ug/kg | 1 | - | U | Yes |
| Benzaldehyde                   | 39.3 | ug/kg | 1 | J | J | Yes |
| 2-Chloronaphthalene            | 69   | ug/kg | 1 | = | U | Yes |
| 4-Chloroaniline                | 170  | ug/kg | 1 | = | U | Yes |
| Carbazole                      | 69   | ug/kg | 1 | - | U | Yes |
| Caprolactam                    | 69   | ug/kg | 1 | = | U | Yes |
| Chrysene                       | 35   | ug/kg | 1 | - | U | Yes |
| bis(2-Chloroethoxy)methane     | 69   | ug/kg | 1 | - | U | Yes |
| bis (2-Chloroethyl) ether      | 69   | ug/kg | 1 | - | U | Yes |
| bis (2-Chlorois opropyl) ether | 69   | ug/kg | 1 | - | U | Yes |
| 4-Chlorophenyl phenyl ether    | 69   | ug/kg | 1 | - | U | Yes |
| 2,4-Dinitrotoluene             | 35   | ug/kg | 1 | = | U | Yes |
| 2,6-Dinitrotoluene             | 35   | ug/kg | 1 | - | U | Yes |
| 3,3'-Dichlorobenzidine         | 69   | ug/kg | 1 | - | U | Yes |
| 1,4-Dioxane                    | 35   | ug/kg | 1 | - | U | Yes |
| Dibenzofuran                   | 69   | ug/kg | 1 | - | U | Yes |
| Di-n-butyl phthalate           | 69   | ug/kg | 1 | - | U | Yes |
| Di-n-octyl phthalate           | 69   | ug/kg | 1 | - | U | Yes |
| Diethyl phthalate              | 69   | ug/kg | 1 | - | U | Yes |
|                                |      |       |   |   |   |     |

| Dimethyl phthalate         | 66.3       | ug/kg      | 1 | J | J | Yes |
|----------------------------|------------|------------|---|---|---|-----|
| bis(2-Ethylhexyl)phthalate | 69         | ug/kg      | 1 | - | U | Yes |
| Fluoranthene               | 35         | ug/kg      | 1 | - | U | Yes |
| Fluorene                   | 35         | ug/kg      | 1 | - | U | Yes |
| Hexachlorobenzene          | 69         | ug/kg      | 1 | - | U | Yes |
| Hexachlorobutadiene        | 35         | ug/kg      | 1 | - | U | Yes |
| Hexachlorocyclopentadiene  | 350        | ug/kg      | 1 | - | U | Yes |
| Hexachloroethane           | 170        | ug/kg      | 1 | - | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 35         | ug/kg      | 1 | - | U | Yes |
| Isophorone                 | 69         | ug/kg      | 1 | - | U | Yes |
| 1-Methylnaphthalene        | 69         | ug/kg      | 1 | - | U | Yes |
| 2-Methylnaphthalene        | 69         | ug/kg      | 1 | - | U | Yes |
| 2-Nitroaniline             | 170        | ug/kg      | 1 | - | U | Yes |
| 3-Nitroaniline             | 170        | ug/kg      | 1 | - | U | Yes |
| 4-Nitroaniline             | 170        | ug/kg      | 1 | - | U | Yes |
| Naphthalene                | 35         | ug/kg      | 1 | - | U | Yes |
| Nitrobenzene               | 69         | ug/kg      | 1 | - | U | Yes |
| N-Nitroso-di-n-propylamine | 69         | ug/kg      | 1 | - | U | Yes |
| Nitrosodiphenylamine       | 170        | ug/kg      | 1 | - | U | Yes |
| Phenanthrene               | 35         | ug/kg      | 1 | - | U | Yes |
| Pyrene                     | 35         | ug/kg      | 1 | - | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 170        | ug/kg      | 1 | - | U | Yes |
|                            |            |            |   |   |   |     |
| METHOD: 8                  | 8270D (SII | <b>M</b> ) |   |   |   |     |
| Benzo(a)pyrene             | 3.5        | ug/kg      | 1 | - | U | Yes |
| Dibenzo(a,h)anthracene     | 3.5        | ug/kg      | 1 | - | U | Yes |

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8270D

| Analyte Name             | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|--------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol           | 69     | ug/kg | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol | 170    | ug/kg | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol       | 170    | ug/kg | 1               | -        | U          | Yes        |

| 2,4-Dimethylphenol          | 170  | ug/kg | 1 | - | U | Yes |
|-----------------------------|------|-------|---|---|---|-----|
| 2,4-Dinitrophenol           | 170  | ug/kg | 1 | - | U | Yes |
| 4,6-Dinitro-o-cresol        | 170  | ug/kg | 1 | - | U | Yes |
| 2-Methylphenol              | 69   | ug/kg | 1 | - | U | Yes |
| 3&4-Methylphenol            | 69   | ug/kg | 1 | - | U | Yes |
| 2-Nitrophenol               | 170  | ug/kg | 1 | - | U | Yes |
| 4-Nitrophenol               | 350  | ug/kg | 1 | - | U | Yes |
| Pentachlorophenol           | 140  | ug/kg | 1 | _ | U | Yes |
| Phenol                      | 69   | ug/kg | 1 | - | U | Yes |
| 2,3,4,6-Tetrachlorophenol   | 170  | ug/kg | 1 | - | U | Yes |
| 2,4,5-Trichlorophenol       | 170  | ug/kg | 1 | = | U | Yes |
| 2,4,6-Trichlorophenol       | 170  | ug/kg | 1 | - | U | Yes |
| Acenaphthene                | 35   | ug/kg | 1 | - | U | Yes |
| Acenaphthylene              | 35   | ug/kg | 1 | - | U | Yes |
| Acetophenone                | 170  | ug/kg | 1 | - | U | Yes |
| Anthracene                  | 35   | ug/kg | 1 | - | U | Yes |
| Atrazine                    | 69   | ug/kg | 1 | - | U | Yes |
| Benzo(a)anthracene          | 35   | ug/kg | 1 | - | U | Yes |
| Benzo(b)fluoranthene        | 35   | ug/kg | 1 | - | U | Yes |
| Benzo(g,h,i)perylene        | 35   | ug/kg | 1 | - | U | Yes |
| Benzo(k)fluoranthene        | 35   | ug/kg | 1 | - | U | Yes |
| 4-Bromophenyl phenyl ether  | 69   | ug/kg | 1 | - | U | Yes |
| Butyl benzyl phthalate      | 69   | ug/kg | 1 | - | U | Yes |
| 1,1'-Biphenyl               | 69   | ug/kg | 1 | - | U | Yes |
| Benzaldehyde                | 18.2 | ug/kg | 1 | J | J | Yes |
| 2-Chloronaphthalene         | 69   | ug/kg | 1 | - | U | Yes |
| 4-Chloroaniline             | 170  | ug/kg | 1 | - | U | Yes |
| Carbazole                   | 69   | ug/kg | 1 | - | U | Yes |
| Caprolactam                 | 69   | ug/kg | 1 | - | U | Yes |
| Chrysene                    | 35   | ug/kg | 1 | - | U | Yes |
| bis(2-Chloroethoxy)methane  | 69   | ug/kg | 1 | - | U | Yes |
| bis(2-Chloroethyl)ether     | 69   | ug/kg | 1 | - | U | Yes |
| bis(2-Chloroisopropyl)ether | 69   | ug/kg | 1 | - | U | Yes |
| 4-Chlorophenyl phenyl ether | 69   | ug/kg | 1 | - | U | Yes |
| 2,4-Dinitrotoluene          | 35   | ug/kg | 1 | - | U | Yes |
| 2,6-Dinitrotoluene          | 35   | ug/kg | 1 | - | U | Yes |
| 3,3'-Dichlorobenzidine      | 69   | ug/kg | 1 | _ | U | Yes |
| 1,4-Dioxane                 | 35   | ug/kg | 1 | _ | U | Yes |
| Dibenzofuran                | 69   | ug/kg | 1 | _ | U | Yes |
| Di-n-butyl phthalate        | 69   | ug/kg | 1 | - | U | Yes |
| Di-n-octyl phthalate        | 69   | ug/kg | 1 | - | U | Yes |
| Diethyl phthalate           | 69   | ug/kg | 1 | - | U | Yes |
| Dimethyl phthalate          | 69   | ug/kg | 1 | - | U | Yes |
| bis(2-Ethylhexyl)phthalate  | 69   | ug/kg | 1 | - | U | Yes |
|                             |      |       |   |   |   |     |

| Fluoranthene               | 35  | ug/kg | 1 | - | U | Yes |
|----------------------------|-----|-------|---|---|---|-----|
| Fluorene                   | 35  | ug/kg | 1 | - | U | Yes |
| Hexachlorobenzene          | 69  | ug/kg | 1 | - | U | Yes |
| Hexachlorobutadiene        | 35  | ug/kg | 1 | - | U | Yes |
| Hexachlorocyclopentadiene  | 340 | ug/kg | 1 | - | U | Yes |
| Hexachloroethane           | 170 | ug/kg | 1 | - | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 35  | ug/kg | 1 | - | U | Yes |
| Isophorone                 | 69  | ug/kg | 1 | - | U | Yes |
| 1-Methylnaphthalene        | 69  | ug/kg | 1 | - | U | Yes |
| 2-Methylnaphthalene        | 69  | ug/kg | 1 | - | U | Yes |
| 2-Nitroaniline             | 170 | ug/kg | 1 | - | U | Yes |
| 3-Nitroaniline             | 170 | ug/kg | 1 | - | U | Yes |
| 4-Nitroaniline             | 170 | ug/kg | 1 | - | U | Yes |
| Naphthalene                | 35  | ug/kg | 1 | - | U | Yes |
| Nitrobenzene               | 69  | ug/kg | 1 | - | U | Yes |
| N-Nitroso-di-n-propylamine | 69  | ug/kg | 1 | - | U | Yes |
| Nitrosodiphenylamine       | 170 | ug/kg | 1 | - | U | Yes |
| Phenanthrene               | 35  | ug/kg | 1 | - | U | Yes |
| Pyrene                     | 35  | ug/kg | 1 | - | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 170 | ug/kg | 1 | - | U | Yes |
|                            |     |       |   |   |   |     |
|                            |     |       |   |   |   |     |
| METHOD:                    | -   | -     |   |   |   |     |
| Benzo(a)pyrene             | 3.4 | ug/kg | 1 | - | U | Yes |
| Dibenzo(a,h)anthracene     | 3.4 | ug/kg | 1 | - | U | Yes |

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ -Equipment Blank

## METHOD: 8270D

| Analyte Name             | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|--------------------------|--------|-------|-----------------|----------|------------|------------|
| 2-Chlorophenol           | 5.6    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol | 5.6    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol       | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol       | 5.6    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol        | 11     | ug/l  | 1               | -        | U          | Yes        |

| 4,6-Dinitro-o-cresol         | 5.6 | ug/l | 1 | - | U  | Yes |
|------------------------------|-----|------|---|---|----|-----|
| 2-Methylphenol               | 2.2 | ug/l | 1 | - | U  | Yes |
| 3&4-Methylphenol             | 2.2 | ug/l | 1 | - | U  | Yes |
| 2-Nitrophenol                | 5.6 | ug/l | 1 | = | U  | Yes |
| 4-Nitrophenol                | 11  | ug/l | 1 | _ | U  | Yes |
| Pentachlorophenol            | 4.4 | ug/l | 1 | - | U  | Yes |
| Phenol                       | 2.2 | ug/l | 1 | - | UJ | Yes |
| 2,3,4,6-Tetrachlorophenol    | 5.6 | ug/l | 1 | - | U  | Yes |
| 2,4,5-Trichlorophenol        | 5.6 | ug/l | 1 | - | U  | Yes |
| 2,4,6-Trichlorophenol        | 5.6 | ug/l | 1 | - | U  | Yes |
| Acenaphthene                 | 1.1 | ug/l | 1 | - | U  | Yes |
| Acenaphthylene               | 1.1 | ug/l | 1 | - | U  | Yes |
| Acetophenone                 | 2.2 | ug/l | 1 | - | U  | Yes |
| Anthracene                   | 1.1 | ug/l | 1 | - | U  | Yes |
| Atrazine                     | 2.2 | ug/l | 1 | = | UJ | Yes |
| Benzaldehyde                 | 5.6 | ug/l | 1 | = | U  | Yes |
| Benzo(a)anthracene           | 1.1 | ug/l | 1 | = | U  | Yes |
| Benzo(a)pyrene               | 1.1 | ug/l | 1 | - | U  | Yes |
| Benzo(b)fluoranthene         | 1.1 | ug/l | 1 | - | U  | Yes |
| Benzo(g,h,i)perylene         | 1.1 | ug/l | 1 | - | U  | Yes |
| Benzo(k)fluoranthene         | 1.1 | ug/l | 1 | - | U  | Yes |
| 4-Bromophenyl phenyl ether   | 1.1 | ug/l | 1 | - | U  | Yes |
| Butyl benzyl phthalate       | 2.2 | ug/l | 1 | - | U  | Yes |
| 1,1'-Biphenyl                | 1.1 | ug/l | 1 | - | U  | Yes |
| 2-Chloronaphthalene          | 2.2 | ug/l | 1 | - | U  | Yes |
| 4-Chloroaniline              | 5.6 | ug/l | 1 | - | U  | Yes |
| Carbazole                    | 1.1 | ug/l | 1 | - | U  | Yes |
| Caprolactam                  | 2.2 | ug/l | 1 | - | U  | Yes |
| Chrysene                     | 1.1 | ug/l | 1 | - | U  | Yes |
| bis(2-Chloroethoxy)methane   | 2.2 | ug/l | 1 | - | U  | Yes |
| bis(2-Chloroethyl)ether      | 2.2 | ug/l | 1 | - | U  | Yes |
| bis(2-Chloroisopropyl)ether  | 2.2 | ug/l | 1 | - | U  | Yes |
| 4-Chlorophenyl phenyl ether  | 2.2 | ug/l | 1 | - | U  | Yes |
| 2,4-Dinitrotoluene           | 1.1 | ug/l | 1 | - | U  | Yes |
| 2,6-Dinitrotoluene           | 1.1 | ug/l | 1 | - | U  | Yes |
| 3,3'-Dichlorobenzidine       | 2.2 | ug/l | 1 | - | U  | Yes |
| 1,4-Dioxane                  | 1.1 | ug/l | 1 | - | U  | Yes |
| Dibenzofuran                 | 5.6 | ug/l | 1 | - | U  | Yes |
| Di-n-butyl phthalate         | 2.2 | ug/l | 1 | - | U  | Yes |
| Di-n-octyl phthalate         | 2.2 | ug/l | 1 | _ | U  | Yes |
| Diethyl phthalate            | 2.2 | ug/l | 1 | - | U  | Yes |
| Dimethyl phthalate           | 2.2 | ug/l | 1 | _ | U  | Yes |
| bis (2-Ethylhexyl) phthalate | 2.2 | ug/l | 1 | - | UJ | Yes |
| Fluoranthene                 | 1.1 | ug/l | 1 | _ | U  | Yes |
|                              |     |      |   |   |    |     |

| Fluorene                   | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
|----------------------------|-------|------|---|---|---|-----|--|--|--|
| Hexachlorobenzene          | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| Hexachlorobutadiene        | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| Hexachlorocyclopentadiene  | 11    | ug/l | 1 | - | U | Yes |  |  |  |
| Hexachloroethane           | 2.2   | ug/l | 1 | - | U | Yes |  |  |  |
| Indeno(1,2,3-cd)pyrene     | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| Isophorone                 | 2.2   | ug/l | 1 | - | U | Yes |  |  |  |
| 1-Methylnaphthalene        | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| 2-Methylnaphthalene        | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| 2-Nitroaniline             | 5.6   | ug/l | 1 | - | U | Yes |  |  |  |
| 3-Nitroaniline             | 5.6   | ug/l | 1 | - | U | Yes |  |  |  |
| 4-Nitroaniline             | 5.6   | ug/l | 1 | - | U | Yes |  |  |  |
| Naphthalene                | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| Nitrobenzene               | 2.2   | ug/l | 1 | - | U | Yes |  |  |  |
| N-Nitroso-di-n-propylamine | 2.2   | ug/l | 1 | - | U | Yes |  |  |  |
| Nitrosodiphenylamine       | 5.6   | ug/l | 1 | - | U | Yes |  |  |  |
| Phenanthrene               | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| Pyrene                     | 1.1   | ug/l | 1 | - | U | Yes |  |  |  |
| 1,2,4,5-Tetrachlorobenzene | 2.2   | ug/l | 1 | - | U | Yes |  |  |  |
|                            |       |      |   |   |   |     |  |  |  |
| 145TUOD 00TOD (0114)       |       |      |   |   |   |     |  |  |  |
| METHOD: 8                  | •     | •    | 4 |   |   | V   |  |  |  |
| Benzo(a)pyrene             | 0.056 | ug/l | 1 | - | U | Yes |  |  |  |
| Dibenzo(a,h)anthracene     | 0.11  | ug/l | 1 | - | U | Yes |  |  |  |

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ - Field Blank Soil

MFTHOD: 8270D

| WILTHOD.                 |        |       |                 |          |            |            |
|--------------------------|--------|-------|-----------------|----------|------------|------------|
| Analyte Name             | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
| 2-Chlorophenol           | 5.5    | ug/l  | 1               | -        | U          | Yes        |
| 4-Chloro-3-methyl phenol | 5.5    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dichlorophenol       | 2.2    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dimethylphenol       | 5.5    | ug/l  | 1               | -        | U          | Yes        |
| 2,4-Dinitrophenol        | 11     | ug/l  | 1               | -        | U          | Yes        |

| 4,6-Dinitro-o-cresol        | 5.5 | ug/l | 1 | - | U  | Yes |
|-----------------------------|-----|------|---|---|----|-----|
| 2-Methylphenol              | 2.2 | ug/l | 1 | - | U  | Yes |
| 3&4-Methylphenol            | 2.2 | ug/l | 1 | - | U  | Yes |
| 2-Nitrophenol               | 5.5 | ug/l | 1 | = | U  | Yes |
| 4-Nitrophenol               | 11  | ug/l | 1 | - | U  | Yes |
| Pentachlorophenol           | 4.4 | ug/l | 1 | - | U  | Yes |
| Phenol                      | 2.2 | ug/l | 1 | - | UJ | Yes |
| 2,3,4,6-Tetrachlorophenol   | 5.5 | ug/l | 1 | - | U  | Yes |
| 2,4,5-Trichlorophenol       | 5.5 | ug/l | 1 | - | U  | Yes |
| 2,4,6-Trichlorophenol       | 5.5 | ug/l | 1 | - | U  | Yes |
| Acenaphthene                | 1.1 | ug/l | 1 | - | U  | Yes |
| Acenaphthylene              | 1.1 | ug/l | 1 | - | U  | Yes |
| Acetophenone                | 2.2 | ug/l | 1 | - | U  | Yes |
| Anthracene                  | 1.1 | ug/l | 1 | - | U  | Yes |
| Atrazine                    | 2.2 | ug/l | 1 | - | UJ | Yes |
| Benzaldehyde                | 5.5 | ug/l | 1 | - | U  | Yes |
| Benzo(a)anthracene          | 1.1 | ug/l | 1 | - | U  | Yes |
| Benzo(a)pyrene              | 1.1 | ug/l | 1 | - | U  | Yes |
| Benzo(b)fluoranthene        | 1.1 | ug/l | 1 | _ | U  | Yes |
| Benzo(g,h,i)perylene        | 1.1 | ug/l | 1 | = | U  | Yes |
| Benzo(k)fluoranthene        | 1.1 | ug/l | 1 | _ | U  | Yes |
| 4-Bromophenyl phenyl ether  | 1.1 | ug/l | 1 | - | U  | Yes |
| Butyl benzyl phthalate      | 2.2 | ug/l | 1 | = | U  | Yes |
| 1,1'-Biphenyl               | 1.1 | ug/l | 1 | - | U  | Yes |
| 2-Chloronaphthalene         | 2.2 | ug/l | 1 | - | U  | Yes |
| 4-Chloroaniline             | 5.5 | ug/l | 1 | - | U  | Yes |
| Carbazole                   | 1.1 | ug/l | 1 | - | U  | Yes |
| Caprolactam                 | 2.2 | ug/l | 1 | - | U  | Yes |
| Chrysene                    | 1.1 | ug/l | 1 | - | U  | Yes |
| bis(2-Chloroethoxy)methane  | 2.2 | ug/l | 1 | - | U  | Yes |
| bis(2-Chloroethyl)ether     | 2.2 | ug/l | 1 | - | U  | Yes |
| bis(2-Chloroisopropyl)ether | 2.2 | ug/l | 1 | - | U  | Yes |
| 4-Chlorophenyl phenyl ether | 2.2 | ug/l | 1 | - | U  | Yes |
| 2,4-Dinitrotoluene          | 1.1 | ug/l | 1 | - | U  | Yes |
| 2,6-Dinitrotoluene          | 1.1 | ug/l | 1 | - | U  | Yes |
| 3,3'-Dichlorobenzidine      | 2.2 | ug/l | 1 | _ | U  | Yes |
| 1,4-Dioxane                 | 1.1 | ug/l | 1 | _ | U  | Yes |
| Dibenzofuran                | 5.5 | ug/l | 1 | _ | U  | Yes |
| Di-n-butyl phthalate        | 2.2 | ug/l | 1 | = | U  | Yes |
| Di-n-octyl phthalate        | 2.2 | ug/l | 1 | - | U  | Yes |
| Diethyl phthalate           | 2.2 | ug/l | 1 | - | U  | Yes |
| Dimethyl phthalate          | 2.2 | ug/l | 1 | = | U  | Yes |
| bis(2-Ethylhexyl)phthalate  | 2.2 | ug/l | 1 | _ | UJ | Yes |
| Fluoranthene                | 1.1 | ug/l | 1 | _ | U  | Yes |
|                             |     | -    |   |   |    |     |

| Fluorene                   | 1.1        | ug/l  | 1 | - | U | Yes |
|----------------------------|------------|-------|---|---|---|-----|
| Hexachlorobenzene          | 1.1        | ug/l  | 1 | - | U | Yes |
| Hexachlorobutadiene        | 1.1        | ug/l  | 1 | - | U | Yes |
| Hexachlorocyclopentadiene  | 11         | ug/l  | 1 | - | U | Yes |
| Hexachloroethane           | 2.2        | ug/l  | 1 | - | U | Yes |
| Indeno(1,2,3-cd)pyrene     | 1.1        | ug/l  | 1 | - | U | Yes |
| Isophorone                 | 2.2        | ug/l  | 1 | - | U | Yes |
| 1-Methylnaphthalene        | 1.1        | ug/l  | 1 | - | U | Yes |
| 2-Methylnaphthalene        | 1.1        | ug/l  | 1 | - | U | Yes |
| 2-Nitroaniline             | 5.5        | ug/l  | 1 | - | U | Yes |
| 3-Nitroaniline             | 5.5        | ug/l  | 1 | - | U | Yes |
| 4-Nitroaniline             | 5.5        | ug/l  | 1 | - | U | Yes |
| Naphthalene                | 1.1        | ug/l  | 1 | - | U | Yes |
| Nitrobenzene               | 1.1        | ug/l  | 1 | - | U | Yes |
| N-Nitroso-di-n-propylamine | 2.2        | ug/l  | 1 | - | U | Yes |
| Nitrosodiphenylamine       | 2.2        | ug/l  | 1 | - | U | Yes |
| Phenanthrene               | 1.1        | ug/l  | 1 | - | U | Yes |
| Pyrene                     | 1.1        | ug/l  | 1 | - | U | Yes |
| 1,2,4,5-Tetrachlorobenzene | 2.2        | ug/l  | 1 | - | U | Yes |
|                            |            | -1    |   |   |   |     |
|                            | 8270D (SIN | •     |   |   |   |     |
| Benzo(a)pyrene             | 0.055      | ug/kg | 1 | - | U | Yes |
| Dibenzo(a,h)anthracene     | 0.11       | ug/kg | 1 | - | U | Yes |
|                            |            |       |   |   |   |     |

|                                                                                                                                                                                                                                                                                                                                                                     | Project Number:_JC36373                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                     | Date:January_25,_2017                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                     | Shipping Date:January_26,_2017                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                     | EPA Region:2                                                                                                                                                                                                                 |
| REVIEW OF SEMIVOLATILE                                                                                                                                                                                                                                                                                                                                              | DRGANIC PACKAGE                                                                                                                                                                                                              |
| The following guidelines for evaluating volatile orgalidation actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous V 2015 –Revision 0. Semivolatile Data Validation. The Q on the data review worksheets are from the prima noted. | eviewer in using professional judgment to<br>g the needs of the data users. The sample<br>a validation guidance documents in the<br>Vaste Support Section, SOP HW-35A, July<br>C criteria and data validation actions listed |
| The hardcopied (laboratory name) _Accutest                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |
| Lab. Project/SDG No.:JC36373<br>No. of Samples:10_SIM/10_SCAN                                                                                                                                                                                                                                                                                                       | Sample matrix:Soil                                                                                                                                                                                                           |
| Trip blank No.:                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |
| Field blank No.:JC36373-10                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |
| Equipment blank No.:JC36373-9                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |
| Field duplicate No.:JC36373-4/JC36373-5                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |
| X Data Completeness                                                                                                                                                                                                                                                                                                                                                 | X Laboratory Control Spikes                                                                                                                                                                                                  |
| X Bala completeness<br>X Holding Times                                                                                                                                                                                                                                                                                                                              | X Eaboratory Control Spikes                                                                                                                                                                                                  |
| X GC/MS Tuning                                                                                                                                                                                                                                                                                                                                                      | X Calibrations                                                                                                                                                                                                               |
| X Internal Standard Performance                                                                                                                                                                                                                                                                                                                                     | X Compound Identifications                                                                                                                                                                                                   |
| X Blanks                                                                                                                                                                                                                                                                                                                                                            | X Compound Quantitation                                                                                                                                                                                                      |
| X Surrogate Recoveries                                                                                                                                                                                                                                                                                                                                              | X Quantitation Limits                                                                                                                                                                                                        |
| X Matrix Spike/Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                               | qualitation Elimino                                                                                                                                                                                                          |
| _Overall Comments:_SVOCs_TCL_special_list_analyzed<br>_analyzed_by_method_SW846-8270D_(SIM)                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |
| Definition of Qualifiers:                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |
| J- Estimated results                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |
| U- Compound not detected                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                              |
| R- Rejected data                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |
| UJ- Estimated nondetect                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |
| Reviewer: / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |

# DATA COMPLETENESS

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED |
|---------------------|---------------------|---------------|
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     | 4                   |               |
| 0 872               |                     |               |
|                     |                     |               |
|                     |                     |               |
| 100                 | _                   |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
| X                   |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     | ×             |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     | <u> </u>      |
|                     |                     | 7             |

| All criteria were met_ | X |  |
|------------------------|---|--|
| Criteria were not met  |   |  |
| and/or see below       |   |  |

## **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID                                                                                                                                                   | DATE     | DATE               | рН | ACTION                                                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|----|----------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                             | SAMPLED  | EXTRACTED/ANALYZED |    |                                                                                                                |  |
| JC36373-2                                                                                                                                                   | 01/25/17 | 02/11/17           | -  | Extracted outside holding time for surrogates recoveries confirmation. No action taken, professional judgment. |  |
|                                                                                                                                                             |          |                    |    |                                                                                                                |  |
| All samples extracted and analyzed within method recommended holding time except for the cases described in this document. Sample preservation appropriate. |          |                    |    |                                                                                                                |  |
|                                                                                                                                                             |          |                    |    |                                                                                                                |  |

| Cooler temperature (Criteria: 4 ± 2 °C): | 3.6°C |
|------------------------------------------|-------|
|------------------------------------------|-------|

## **Actions**

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

|             |           | Ing Time Actions for Semivo                            | · · · · · · · · · · · · · · · · · · · | tion                                    |
|-------------|-----------|--------------------------------------------------------|---------------------------------------|-----------------------------------------|
| Matrix      | Preserved | Criteria                                               | Detected<br>Associated<br>Compounds   | Non-Detected<br>Associated<br>Compounds |
|             | No        | ≤7 days (for extraction)<br>≤40 days (for analysis)    | Use profession                        | onal judgment                           |
|             | No        | > 7 days (for extraction)<br>> 40 days (for analysis)  | J                                     | Use<br>professional<br>judgment         |
| Aqueous     | Yes       | ≤ 7 days (for extraction)<br>≤ 40 days (for analysis)  | No qualification                      |                                         |
|             | Yes       | > 7 days (for extraction)<br>> 40 days (for analysis)  | J                                     | υJ                                      |
|             | Yes/No    | Grossly Exceeded                                       | J                                     | UJ or R                                 |
|             | No        | ≤ 14 days (for extraction)<br>≤ 40 days (for analysis) | Use professi                          | onal judgment                           |
| Non-Aqueous | No        | > 14 days (for extraction)<br>> 40 days (for analysis) | J                                     | Use<br>professional<br>judgment         |
|             | Yes       | ≤ 14 days (for extraction)<br>≤ 40 days (for analysis) | No qualification                      |                                         |
|             | Yes       | > 14 days (for extraction)<br>> 40 days (for analysis) | n) 1 (n)                              |                                         |
|             | Yes/No    | Grossly Exceeded                                       | J                                     | UJ or R                                 |

| All criteria were met _          | X |
|----------------------------------|---|
| Criteria were not met see below. |   |

#### **GC/MS TUNING**

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

- \_X\_\_ The DFTPP performance results were reviewed and found to be within the specified criteria.
- \_X\_\_ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

| List the |  | samples | affected |  |
|----------|--|---------|----------|--|
|          |  |         |          |  |
|          |  |         |          |  |

## Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

| All criteria were met _ | _X | _ |
|-------------------------|----|---|
| Criteria were not met   |    |   |
| and/or see below        |    |   |

## **INITIAL CALIBRATION VERIFICATION**

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Instrument ID numbers:GCMS2P Matrix/Level:Aqueous/low |            |           |                                  |                   | GCMS6P                       |   |  |
|-------------------------------------------------------|------------|-----------|----------------------------------|-------------------|------------------------------|---|--|
| Date of instrume<br>Matrix/Le                         | nt ID nu   | mbers:_   | GCMS4M                           |                   |                              |   |  |
| DATE                                                  | LAB<br>ID# | FILE      | CRITERIA OUT<br>RFs, %RSD, %D, r | COMPOUND          | SAMPLES<br>AFFECTED          |   |  |
| Initia                                                | l and init | ial calib | ration verification mee          | ts the method and | guidance validation document | _ |  |

**Note:** Instruments GCMS3M; and GCM3E were also employed for running QC samples for this data package. QC samples not validated.

performance criteria.

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

| Criteria                                                              | Action                    |                           |  |
|-----------------------------------------------------------------------|---------------------------|---------------------------|--|
| Criteria                                                              | Detect                    | Non-detect                |  |
| Initial Calibration not performed at specified frequency and sequence | Use professional judgment | Use professional judgment |  |
| Initial Calibration not performed at the specified                    |                           | K                         |  |
| concentrations                                                        |                           | UJ                        |  |
| RRF < Minimum RRF in Table 2 for target                               | Use professional judgment | R                         |  |
| analyte                                                               | J+ or R                   | K                         |  |
| RRF ≥ Minimum RRF in Table 2 for target<br>analyte                    | No qualification          | No qualification          |  |
| %RSD > Maximum %RSD in Table 2 for target analyte                     | J                         | Use professional judgment |  |
| %RSD ≤ Maximum %RSD in Table 2 for target analyte                     | No qualification          | No qualification          |  |

## **Initial Calibration**

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

| Analyte                       | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D¹ | Opening<br>Maximum<br>%D¹ |
|-------------------------------|----------------|-----------------|---------------------------|---------------------------|
| 1,4-Dioxane                   | 0.010          | 40.0            | ± 40.0                    | ± 50.0                    |
| Benzaldehyde                  | 0.100          | 40.0            | ± 40.0                    | ± 50.0                    |
| Phenol                        | 0.080          | 20.0            | ±20.0                     | ±25.0                     |
| Bis(2-chloroethyl)ether       | 0.100          | 20.0            | ±20.0                     | ±25.0                     |
| 2-Chlorophenol                | 0.200          | 20.0            | ±20.0                     | ± 25.0                    |
| 2-Methylphenol                | 0.010          | 20.0            | ±20.0                     | ±25.0                     |
| 3-Methylphenol                | 0.010          | 20.0            | ±20.0                     | ±25.0                     |
| 2,2'-Oxybis-(1-chloropropane) | 0.010          | 20.0            | ±25.0                     | ±50.0                     |
| Acetophenone                  | 0.060          | 20.0            | ±20.0                     | ±25.0                     |
| 4-Methylphenol                | 0.010          | 20.0            | ±20.0                     | ±25.0                     |
| N-Nitroso-di-n-propylamine    | 0.080          | 20.0            | ±25.0                     | ±25.0                     |
| Hexachloroethane              | 0.100          | 20.0            | ±20.0                     | ±25.0                     |
| Nitrobenzene                  | 0.090          | 20.0            | ±20.0                     | ±25.0                     |
| Isophorone                    | 0.100          | 20.0            | ±20.0                     | ±25.0                     |
| 2-Nitrophenol                 | 0.060          | 20.0            | ±20.0                     | ±25.0                     |
| 2,4-Dimethylphenol            | 0.050          | 20.0            | ±25.0                     | ± 50.0                    |
| Bis(2-chloroethoxy)methane    | 0.080          | 20.0            | ±20.0                     | ±25.0                     |
| 2,4-Dichlorophenol            | 0.060          | 20.0            | ±20.0                     | ±25.0                     |
| Naphthalene                   | 0.200          | 20.0            | ± 20.0                    | ±25.0                     |
| 4-Chloroaniline               | 0.010          | 40.0            | ± 40.0                    | ± 50.0                    |
| lexachlorobutadiene           | 0.040          | 20.0            | ± 20.0                    | ±25.0                     |
| Caprolactam                   | 0.010          | 40.0            | ± 30.0                    | ± 50.0                    |
| 4-Chloro-3-methylphenol       | 0.040          | 20.0            | ±20.0                     | ±25.0                     |
| 2-Methylnaphthalene           | 0.100          | 20.0            | ± 20.0                    | ±25.0                     |
| lexachlorocyclopentadiene     | 0.010          | 40.0            | ± 40.0                    | ±50.0                     |
| 2,4,6-Trichlorophenol         | 0.090          | 20.0            | ± 20.0                    | ±25.0                     |
| 2,4,5-Trichlorophenol         | 0.100          | 20.0            | ± 20.0                    | ±25.0                     |
| I, I'-Biphenyl                | 0.200          | 20.0            | ± 20.0                    | ±25.0                     |

| Analyte                    | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D <sup>1</sup> | Opening<br>Maximum<br>%D <sup>1</sup> |
|----------------------------|----------------|-----------------|---------------------------------------|---------------------------------------|
| 2-Chloronaphthalene        | 0.300          | 20.0            | ±20.0                                 | ± 25.0                                |
| 2-Nitroaniline             | 0.060          | 20.0            | ±25.0                                 | ± 25.0                                |
| Dimethylphthalate          | 0.300          | 20.0            | ±25.0                                 | ± 25.0                                |
| 2,6-Dinitrotoluene         | 0.080          | 20.0            | ±20.0                                 | ± 25.0                                |
| Acenaphthylene             | 0.400          | 20.0            | ± 20.0                                | ± 25.0                                |
| 3-Nitroaniline             | 0.010          | 20.0            | ±25.0                                 | ± 50.0                                |
| Acenaphthene               | 0.200          | 20.0            | ± 20.0                                | ±25.0                                 |
| 2,4-Dinitrophenol          | 0.010          | 40.0            | ± 50.0                                | ± 50.0                                |
| 4-Nitrophenol              | 0.010          | 40.0            | ± 40.0                                | ± 50.0                                |
| Dibenzofuran               | 0.300          | 20.0            | ± 20.0                                | ±25.0                                 |
| 2,4-Dinitrotoluene         | 0.070          | 20.0            | ±20.0                                 | ±25.0                                 |
| Diethylphthalate           | 0.300          | 20.0            | ±20.0                                 | ±25.0                                 |
| 1,2,4,5-Tetrachlorobenzene | 0.100          | 20.0            | ±20.0                                 | ±25,0                                 |
| 4-Chlorophenyl-phenylether | 0.100          | 20.0            | ±20.0                                 | ±25.0                                 |
| Fluorene                   | 0.200          | 20.0            | ± 20.0                                | ±25.0                                 |
| 4-Nitroaniline             | 0.010          | 40.0            | ± 40.0                                | ±50.0                                 |
| 4,6-Dinitro-2-methylphenol | 0.010          | 40.0            | ±30.0                                 | ± 50.0                                |
| 4-Bromophenyl-phenyl ether | 0.070          | 20.0            | ±20.0                                 | ±25.0                                 |
| N-Nitrosodiphenylamine     | 0.100          | 20.0            | ±20.0                                 | ±25.0                                 |
| Hexachlorobenzene          | 0.050          | 20.0            | ±20.0                                 | ±25.0                                 |
| Atrazine                   | 0.010          | 40.0            | ±25.0                                 | ± 50.0                                |
| Pentachlorophenol          | 0.010          | 40.0            | ± 40.0                                | ± 50.0                                |
| Phenanthrene               | 0.200          | 20.0            | ±20.0                                 | ±25.0                                 |
| Anthracene                 | 0.200          | 20.0            | ±20.0                                 | ± 25.0                                |
| Carbazole                  | 0.050          | 20.0            | ± 20.0                                | ± 25.0                                |
| Di-n-butylphthalate        | 0.500          | 20.0            | ± 20.0                                | ±25.0                                 |
| Fluoranthene               | 0.100          | 20.0            | ± 20.0                                | ±25.0                                 |
| Pyrene                     | 0.400          | 20.0            | ±25.0                                 | ± 50.0                                |
| Butylbenzylphthalate       | 0.100          | 20.0            | ±25.0                                 | ± 50.0                                |

| Analyte                     | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D <sup>1</sup> | Opening<br>Maximum<br>%D¹ |
|-----------------------------|----------------|-----------------|---------------------------------------|---------------------------|
| 3,3'-Dichlorobenzidine      | 0.010          | 40.0            | ± 40.0                                | ± 50.0                    |
| Benzo(a)anthracene          | 0.300          | 20.0            | ±20.0                                 | ±25.0                     |
| Chrysene                    | 0.200          | 20.0            | ±20.0                                 | ± 50.0                    |
| Bis(2-ethylhexyl) phthalate | 0.200          | 20.0            | ±25.0                                 | ± 50.0                    |
| Di-n-octylphthalate         | 0.010          | 40.0            | ± 40.0                                | ± 50.0                    |
| Benzo(b)fluoranthene        | 0.010          | 20.0            | ±25.0                                 | ± 50.0                    |
| Benzo(k)fluoranthene        | 0.010          | 20.0            | ±25.0                                 | ± 50.0                    |
| Benzo(a)pyrene              | 0.010          | 20.0            | ±20.0                                 | ± 50.0                    |
| Indeno(1,2,3-cd)pyrene      | 0.010          | 20.0            | ±25.0                                 | ± 50.0                    |
| Dibenzo(a,h)anthracene      | 0.010          | 20.0            | ±25.0                                 | ± 50.0                    |
| Benzo(g,h,i)perylene        | 0.010          | 20.0            | ±30.0                                 | ± 50.0                    |
| 2,3,4,6-Tetrachlorophenol   | 0.040          | 20.0            | ±20.0                                 | ± 50.0                    |
| Naphthalene                 | 0.600          | 20.0            | ±25.0                                 | ±25.0                     |
| 2-Methylnaphthalene         | 0.300          | 20.0            | ±20.0                                 | ±25.0                     |
| Acenaphthylene              | 0.900          | 20.0            | ±20.0                                 | ±25.0                     |
| Acenaphthene                | 0.500          | 20.0            | ±20.0                                 | ±25.0                     |
| Fluorene                    | 0.700          | 20.0            | ±25.0                                 | ± 50.0                    |
| Phenanthrene                | 0.300          | 20.0            | ±25.0                                 | ± 50.0                    |
| Anthracene                  | 0.400          | 20.0            | ± 25.0                                | ± 50.0                    |
| Fluoranthene                | 0.400          | 20.0            | ±25.0                                 | ± 50.0                    |
| Pyrene                      | 0.500          | 20.0            | ±30.0                                 | ±50.0                     |
| Benzo(a)anthracene          | 0.400          | 20.0            | ±25.0                                 | ± 50.0                    |
| Chyrsene                    | 0.400          | 20.0            | ±25.0                                 | ± 50.0                    |
| Benzo(b)fluoranthene        | 0.100          | 20.0            | ±30.0                                 | ± 50.0                    |
| Benzo(k)fluoranthene        | 0.100          | 20.0            | ± 30.0                                | ±50.0                     |
| Benzo(a)pyrene              | 0.100          | 20.0            | ±25.0                                 | ± 50.0                    |
| Indeno(1,2,3-cd)pyrene      | 0.100          | 20.0            | ± 40.0                                | ± 50.0                    |
| Dibenzo(a,h)anthracene      | 0.010          | 25.0            | ± 40.0                                | ± 50.0                    |
| Benzo(g,h,i)perylene        | 0.020          | 25.0            | ±40.0                                 | ± 50.0                    |

| Pentachlorophenol               | 0.010 | 40.0 | ± 50.0 | ± 50.0 |  |
|---------------------------------|-------|------|--------|--------|--|
| Deuterated Monitoring Compounds |       |      |        |        |  |

| Analyte                                   | Minimum<br>RRF | Maximum<br>%RSD | Opening<br>Maximum<br>%D <sup>1</sup> | Closing<br>Maximum<br>%D |
|-------------------------------------------|----------------|-----------------|---------------------------------------|--------------------------|
| 1,4-Dioxane-d <sub>8</sub>                | 0.010          | 20.0            | ±25.0                                 | ± 50.0                   |
| Phenol-d <sub>5</sub>                     | 0.010          | 20.0            | ±25.0                                 | ±25.0                    |
| Bis-(2-chloroethyl)ether-d <sub>8</sub>   | 0.100          | 20.0            | ±20.0                                 | ±25.0                    |
| 2-Chlorophenol-d₄                         | 0.200          | 20.0            | ±20.0                                 | ±25.0                    |
| 4-Methylphenol-d <sub>8</sub>             | 0.010          | 20.0            | ±20.0                                 | ±25.0                    |
| 4-Chloroaniline-d <sub>4</sub>            | 0.010          | 40.0            | ± 40.0                                | ±50.0                    |
| Nitrobenzene-d <sub>5</sub>               | 0.050          | 20.0            | ± 20.0                                | ±25.0                    |
| 2-Nitrophenol-d <sub>4</sub>              | 0.050          | 20.0            | ±20.0                                 | ±25.0                    |
| 2,4-Dichlorophenol-d <sub>3</sub>         | 0.060          | 20.0            | ±20.0                                 | ±25.0                    |
| Dimethylphthalate-d <sub>6</sub>          | 0.300          | 20.0            | ±20.0                                 | ±25.0                    |
| Acenaphthylene-d <sub>8</sub>             | 0.400          | 20.0            | ±20.0                                 | ±25.0                    |
| 4-Nitrophenol-d <sub>4</sub>              | 0.010          | 40.0            | ± 40.0                                | ± 50.0                   |
| Fluorene-d <sub>10</sub>                  | 0.100          | 20.0            | ±20.0                                 | ±25.0                    |
| 4,6-Dinitro-2-methylphenol-d₂             | 0.010          | 40.0            | ±30.0                                 | ± 50.0                   |
| Anthracene-d <sub>10</sub>                | 0.300          | 20.0            | ± 20.0                                | ±25.0                    |
| Pyrene-d <sub>10</sub>                    | 0.300          | 20.0            | ±25.0                                 | ± 50.0                   |
| Benzo(a)pyrene-d <sub>12</sub>            | 0.010          | 20.0            | ± 20.0                                | ± 50.0                   |
| Fluoranthene-d <sub>10</sub> (SIM)        | 0.400          | 20.0            | ±25.0                                 | ± 50.0                   |
| 2-Methylnaphthalene-d <sub>10</sub> (SIM) | 0.300          | 20.0            | ±20.0                                 | ± 25.0                   |

<sup>&</sup>lt;sup>1</sup> If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

| All criteria were met _ |    |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        | _X |

## CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:01/1         | 0-11/17_(SCAN)                  | 12/14/16_(SIM)      |
|------------------------------------------|---------------------------------|---------------------|
| Date of initial calibration verification | (ICV):_01/11/17                 | _12/14/16;_12/19/16 |
|                                          | eation (CCV):01/31/17           |                     |
|                                          | • • •                           | 02/02/17            |
| Date of closing CCV:                     | <del></del>                     | <u> </u>            |
| Instrument ID numbers:                   | GCMS2P                          | GCMS4M              |
| Matrix/Level:                            | Aqueous/low                     | Aqueous/low         |
| Date of initial calibration:             | 02/07/17_(SCAN)                 |                     |
| Date of initial calibration verification |                                 |                     |
|                                          | ation (CCV):02/08/17;_02/10/17_ |                     |
| Date of closing CCV:                     |                                 |                     |
| Instrument ID numbers:                   | GCMS6P                          |                     |
| Matrix/Level:                            | Aqueous/low                     |                     |
|                                          |                                 |                     |

| DATE     | LAB FILE<br>ID# | CRITERIA OUT<br>RFs, %RSD, <u>%D</u> , | COMPOUND                    | SAMPLES<br>AFFECTED |  |
|----------|-----------------|----------------------------------------|-----------------------------|---------------------|--|
| GCMS2P   |                 | <u> </u>                               |                             | ·                   |  |
| 01/31/17 | cc2898-25       | 22.7                                   | Phenol                      | JC36373-9; -10      |  |
| 5        |                 | -24.6                                  | n-Nitroso-di-n-propylamine* |                     |  |
|          |                 | 21.8                                   | bis(2-chloroethoxy)methane  |                     |  |
|          |                 | 20.2                                   | Butylbenzylphthalate*       |                     |  |
|          |                 | 26.0                                   | bis(2-ethylhexyl)phthalate  |                     |  |
| 01/31/17 | cc2899-25       | -21.1                                  | Atrazine                    |                     |  |
| GCMS6P   |                 |                                        |                             |                     |  |
| 02/10/17 | cc1599-25       | -24.7                                  | 4-nitrophenol*              | JC36373-2           |  |
|          |                 | -24.7                                  | 4,6-dinitro-2-methylphenol* | (confirmation run)  |  |

**Note:** Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document. Results qualified as estimated (J or UJ) in affected samples.

\* % difference outside was method performance criteria but within the guidance document performance criteria. No action taken.

No action taken for QC samples.

No closing calibration verification included in data package. No action taken, professional judgment.

## Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

| Criteria for Opening CCV                                                              | Criteria for Closing CCV                                                              | Action                                    |                                      |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|--|
| Criteria for Opening CCV                                                              | Criteria for Closing CCV                                                              | Detect                                    | Non-detect                           |  |
| CCV not performed at required frequency and sequence                                  | CCV not performed at required frequency                                               | Use<br>professional<br>judgment<br>R      | Use<br>professional<br>judgment<br>R |  |
| CCV not performed at specified concentration                                          | CCV not performed at specified concentration                                          | Use<br>professional<br>judgment           | Use<br>professional<br>judgment      |  |
| RRF < Minimum RRF in Table 2 for target analyte                                       | RRF < Minimum RRF in Table 2<br>for target analyte                                    | Use<br>professional<br>judgment<br>J or R | R                                    |  |
| RRF ≥ Minimum RRF in Table 2 for target analyte                                       | RRF ≥ Minimum RRF in Table 2<br>for target analyte                                    | No<br>qualification                       | No<br>qualification                  |  |
| %D outside the Opening<br>Maximum %D limits in Table 2<br>for target analyte          | %D outside the Closing Maximum<br>%D limits in Table 2 for target<br>analyte          | J                                         | Ωĵ                                   |  |
| %D within the inclusive Opening<br>Maximum %D limits in Table 2<br>for target analyte | %D within the inclusive Closing<br>Maximum %D limits in Table 2<br>for target analyte | No<br>qualification                       | No<br>qualification                  |  |

| All criteria were metX |  |
|------------------------|--|
| Criteria were not met  |  |
| and/or see below       |  |

## BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

## Laboratory blanks

Note:

| DATE<br>ANALYZED | LAB ID           | LEVEL/<br>MATRIX | COMPOUND               | CONCENTRATION UNITS        |
|------------------|------------------|------------------|------------------------|----------------------------|
| _No_target_ana   | llytes_detected_ | _in_method_bla   | anks                   |                            |
|                  |                  |                  |                        |                            |
| Field/Equipme    | nt/Trip blank    |                  |                        |                            |
| DATE<br>ANALYZED | LAB ID           | LEVEL/<br>MATRIX | COMPOUND               | CONCENTRATION UNITS        |
| _No_target_ana   | lytes_detected_  | _in_the_field/ed | quipment_blanks_analy: | zed_with_this_data_package |
|                  |                  |                  |                        |                            |
|                  |                  |                  |                        |                            |
|                  |                  |                  |                        |                            |
| -                |                  |                  |                        |                            |

13

| All criteria were met _ | _X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

# BLANK ANALYSIS RESULTS (Section 3)

## **Blank Actions**

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

| Blank Type              | Blank Result                                                                                      | Sample Result             | Action                                                                    |
|-------------------------|---------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------|
|                         | Detect                                                                                            | Non-detect                | No qualification                                                          |
|                         | < CRQL                                                                                            | < CRQL                    | Report at CRQL and qualify as non-detect (U)                              |
|                         |                                                                                                   | ≥ CRQL                    | Use professional judgment                                                 |
|                         |                                                                                                   | < CRQL                    | Report at CRQL and qualify as non-detect (U)                              |
| Method,                 | ≥CRQL                                                                                             | ≥ CRQL but < Blank Result | Report at sample results and qualify as non-detect (U) or as unusable (R) |
| TCLP/SPLP<br>LEB, Field |                                                                                                   | ≥ CRQL and ≥ Blank Result | Use professional judgment                                                 |
|                         | Grossly high                                                                                      | Detect                    | Report at sample results and qualify as unusable (R)                      |
|                         | TIC > 5.0 ug/L<br>(water) or 0.0050<br>mg/L (TCLP<br>leachate)<br>or<br>TIC > 170 ug/Kg<br>(soil) | Detect                    | Use professional judgment                                                 |

# List samples qualified

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED<br>SAMPLES |
|----------------------------|----------|------------|----------|-----|---------------------|
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            | ,        |            |          |     |                     |

Matrix: Soil

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowX     |

## SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Action Criteria Non-detect Detect %R < 10% (excluding DMCs with 10% as a lower J-R acceptance limit)  $10\% \le \%R$  (excluding DMCs with 10% as a lower J-UJ acceptance limit) < Lower Acceptance Limit Lower Acceptance limit  $\leq \%R \leq Upper$  Acceptance Limit No qualification No qualification %R > Upper Acceptance Limit No qualification

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

| SAMPLE ID | SURROGATE COMPOUND                                                                                | ACTION |
|-----------|---------------------------------------------------------------------------------------------------|--------|
|           | uired_criteria_in_all_samples_analyzed_except_fo<br>_deuterated_surrogates_added_to_the_samples_a |        |
|           |                                                                                                   |        |

**Note:** All surrogate standards biased high in sample JC36373-2. Confirmed by re-extraction outside the holding time. Surrogates recovered within laboratory control limits in the confirmation run. No action taken, professional judgment.

Table 8. Semivolatile DMCs and the Associated Target Analytes

| 1,4-Dioxane-ds (DMC-1)                    | Phenol-d <sub>5</sub> (DMC-2)         | Bis(2-Chloroethyl) ether-d <sub>8</sub> |
|-------------------------------------------|---------------------------------------|-----------------------------------------|
|                                           |                                       | (DMC-3)                                 |
| 1,4-Dioxane                               | Benzaldehyde                          | Bis(2-chloroethyl)ether                 |
|                                           | Phenol                                | 2,2'-Oxybis(1-chloropropane)            |
|                                           |                                       | Bis(2-chioroethoxy)methane              |
| 2-Chlorophenol-d4(DMC-4)                  | 4-Methylphenol-d <sub>8</sub> (DMC-5) | 4-Chloroaniline-d <sub>4</sub> (DMC-6)  |
| 2-Chlorophenol                            | 2-Methylphenol                        | 4-Chloroaniline                         |
|                                           | 3-Methylphenol                        | Hexachlorocyclopentadiene               |
|                                           | 4-Methylphenol                        | Dichlorobenzidine                       |
|                                           | 2,4-Dimethylphenol                    |                                         |
| Nitrobenzene-d <sub>5</sub> (DMC-7)       | 2-Nitrophenol-d <sub>4</sub> (DMC-8)  | 2,4-Dichlorophenol-d3(DMC-9)            |
| Acetophenone                              | Isophorone                            | 2,4-Dichlorophenol                      |
| N-Nitroso-di-n-propylamine                | 2-Nitrophenol                         | Hexachlorobutadiene                     |
| l-lexachloroethane                        |                                       | Hexachlorocyclopentadiene               |
| Nitrobenzene                              |                                       | 4-Chloro-3-methylphenol                 |
| 2,6-Dinitrotoluene                        |                                       | 2,4,6-Trichlorophenol                   |
| 2,4-Dinitrotoluene                        |                                       | 2,4,5-Trichlorophenol                   |
| N-Nitrosodiphenylamine                    |                                       | 1,2,4,5-Tetrachlorobenzene              |
|                                           |                                       | *Pentachlorophenol                      |
|                                           |                                       | 2,3,4,6-Tetrachlorophenol               |
| Dimethylphthalate-d <sub>6</sub> (DMC-10) | Acenaphthylene-ds (DMC-11)            | 4-Nitrophenol-d. (DMC-12)               |
| Caprolactam                               | *Naphthalene                          | 2-Nitroaniline                          |
| 1,1'-Biphenyl                             | *2-Methylnaphthalene                  | 3-Nitroaniline                          |
| Dimethylphthalate                         | 2-Chloronaphthalene                   | 2,4-Dinitrophenol                       |
| Diethylphthalate                          | *Acenaphthylene                       | 4-Nitrophenol                           |
| Di-n-butylphthalate                       | *Acenaphthene                         | 4-Nitroaniline                          |
| Butylbenzylphthalate                      |                                       |                                         |
| Bis(2-ethylhexyl) phthalate               |                                       |                                         |
| Di-n-octylphthalate                       |                                       |                                         |

| Fluorene-d <sub>10</sub> (DMC-13)                                                     | 4,6-Dinitro-2-methylphenol-d <sub>2</sub><br>(DMC-14) | Anthracene-d <sub>10</sub> (DMC-15)                  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole | 4,6-Dinitro-2-methylphenol                            | Hexachlorobenzene Atrazine *Phenanthrene *Anthracene |
| Pyrene-d <sub>10</sub> (DMC-16)                                                       | Benzo(a)pyrene-d <sub>12</sub> (DMC-17)               |                                                      |
| *Fluoranthene                                                                         | 3,3'-Dichlorobenzidine                                |                                                      |
| *Pyrene                                                                               | *Benzo(b)fluoranthene                                 |                                                      |
| *Benzo(a)anthracene                                                                   | *Benzo(k)fluoranthene                                 |                                                      |
| *Chrysene                                                                             | *Benzo(a)pyrene                                       |                                                      |
|                                                                                       | *Indeno(1,2,3-cd)pyrene                               |                                                      |
|                                                                                       | *Dibenzo(a,h)anthracene                               |                                                      |
|                                                                                       | *Benzo(g,h,i)perylene                                 |                                                      |

<sup>\*</sup>Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

| Fluoranthene-d10<br>(DMC-1) | 2-Methylnaphthalene-d10<br>(DMC-2) |
|-----------------------------|------------------------------------|
| Fluoranthene                | Naphthalene                        |
| Pyrene                      | 2-Methylnaphthalene                |
| Benzo(a)anthracene          | Acenaphthylene                     |
| Chrysene                    | Acenaphthene                       |
| Benzo(b)fluoranthene        | Fluorene                           |
| Benzo(k)fluoranthene        | Pentachlorophenol                  |
| Benzo(a)pyrene              | Phenanthrene                       |
| Indeno(1,2,3-cd)pyrene      | Anthracene                         |
| Dibenzo(a,h)anthracene      |                                    |
| Benzo(g,h,i)perylene        | 1                                  |

| All criteria were met _ |     |   |
|-------------------------|-----|---|
| Criteria were not met   |     |   |
| and/or see below        | _X_ | _ |

## VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

#### MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

| The QC reported here applies to the following samples: | Method: SW846 8270D  |
|--------------------------------------------------------|----------------------|
| Sample ID:JC36191-3_(SIM)                              | Matrix/Level:Aqueous |
| Sample ID:JC36191-1                                    | Matrix/Level:Aqueous |
| Sample ID:JC36342-4_(SIM)                              | Matrix/Level:Soil    |
| Sample ID:JC36373-4                                    | Matrix/Level:Soil    |

# The QC reported here applies to the following samples: JC36373-9, JC36373-10

| Compound                           | JC3619<br>ug/l | 91-1<br>Q | Spike<br>ug/l | MS<br>ug/l   | MS<br>%          | Spike<br>ug/l | MSD<br>ug/l  | MSD<br>%      | RPD      | Limits<br>Rec/RPD      |
|------------------------------------|----------------|-----------|---------------|--------------|------------------|---------------|--------------|---------------|----------|------------------------|
| 4,6-Dinitro-o-cres<br>Benzaldehyde | sol ND<br>ND   |           | 111<br>111    | 27.3<br>1530 | 25* a<br>1377* a |               | 36.4<br>1860 | 33<br>1674* a | 29<br>19 | 26-151/37<br>11-132/37 |

<sup>(</sup>a) Outside of in house control limits due to matrix interference.

<sup>\* -</sup> outside laboratory control limits

# The QC reported here applies to the following samples: JC36373-9, JC36373-10

| Compound                        | JC3619<br>ug/l | 1-3<br>Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | Spike<br>ug/i | MSD<br>ug/l | MSD<br>% | RPD   | Limits<br>Rec/RPD |
|---------------------------------|----------------|----------|---------------|------------|---------|---------------|-------------|----------|-------|-------------------|
| Benzo(a)pyrene<br>Dibenzo(a,h)- | 3.02           |          | 2.22          | 4.72       | 77      | 2.22          | 7.06        | 182* b   | 40* c | 10-116/38         |
| anthracene                      | 0.521          |          | 2.22          | 2.45       | 72      | 2.22          | 4.01        | 142* b   | 48    | 10-116/48         |

Method: SW846 8270D SIM

The QC reported here applies to the following samples: Method: SW846 8270D BY SIM JC36373-1, JC36373-2, JC36373-3, JC36373-4, JC36373-5, JC36373-6, JC36373-7, JC36373-8

|                | JC3637 | 2-4 | Spike | MS    | MS     | Spike | MSD   | MSD     |       | Limits    |
|----------------|--------|-----|-------|-------|--------|-------|-------|---------|-------|-----------|
| Compound       | -33    | Q   | ug/kg | ug/kg | %      | ug/kg | ug/kg | %       | RPD   | Rec/RPD   |
| Benzo(a)pyrene | 135    |     | 37.9  | 220   | 224* a | 37.8  | 564   | 1134* a | 88* b | 18-188/44 |
| Dibenzo(a,h)-  |        |     |       |       |        |       |       |         |       |           |
| anthracene     | 23.2   |     | 37.9  | 59.9  | 97     | 37.8  | 118   | 251* a  | 65* b | 28-169/41 |

<sup>(</sup>a) Outside of in house control limits due to possible sample nonhomogeneity.

Note: MS/MSD % recovery and RPD within laboratory control limits except for the cases described in this document. Results apply to the unspiked sample; unspiked sample from another job. No qualification performed based on MS/MSD results.

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

#### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

<sup>(</sup>b) Outside control limits due to matrix interference.

<sup>(</sup>c) Outside of in house control limits.

<sup>\* -</sup> outside laboratory control limits

<sup>(</sup>b) Analytical precision exceeds in-house control limits.

<sup>\* -</sup> outside laboratory control limits

| All criteria were met _ | Х |  |
|-------------------------|---|--|
| Criteria were not met   |   |  |
| and/or see below        |   |  |

#### INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

| DATE          | SAMPLE ID      | IS OUT               | IS AREA             | ACCEPTABLE RANGE     | ACTION   |
|---------------|----------------|----------------------|---------------------|----------------------|----------|
| Internal area | meets the requ | uired criteria for b | atch samples corres | ponding to this data | package. |
|               |                |                      |                     |                      |          |
|               |                |                      |                     |                      |          |

#### Action:

- If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
  - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
  - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
  - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note:

Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

## Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

| Criteria                                                                                         | Action           |                  |  |
|--------------------------------------------------------------------------------------------------|------------------|------------------|--|
| Спіспа                                                                                           | Detect           | Non-detect       |  |
| Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL                       | J+               | e R              |  |
| 20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL                 | J+               | บม               |  |
| 50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL                | No qualification | No qualification |  |
| Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL                      | J-               | No qualification |  |
| RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds | R                | R                |  |
| RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds | No qualification | No qualification |  |

|                                              |                                                                                                                                                                                                                                                                                                                                                                      | All criteria were metX Criteria were not met and/or see below                                                                                                                                                                  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TARGET COMP                                  | OUND IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |
| Criteria:                                    |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                                                                                                                      | ounds within ±0.06 RRT units of the standard CV) or mid-point standard from the initial Yes? or No?                                                                                                                            |
| List compounds                               | not meeting the criteria described above:                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
| Sample ID                                    | Compounds                                                                                                                                                                                                                                                                                                                                                            | Actions                                                                                                                                                                                                                        |
| spectrum from (calibration)] mus<br>a.<br>b. | the associated calibration standard (ope<br>t match according to the following criteria:<br>All ions present in the standard mass spe<br>must be present in the sample spectrum.<br>The relative intensities of these ions must<br>sample spectra (e.g., for an ion with an a<br>the corresponding sample ion abundance<br>lons present at greater than 10% in the s | aboratory-generated standard [i.e., the mass ming CCV or mid-point standard from initial ectrum at a relative intensity greater than 10% agree within ±20% between the standard and abundance of 50% in the standard spectrum, |
| List compounds                               | not meeting the criteria described above:                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
| Sample ID                                    | Compounds                                                                                                                                                                                                                                                                                                                                                            | Actions                                                                                                                                                                                                                        |

\_ldentified\_compounds\_meet\_the\_required\_criteria\_\_\_\_

## Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

## TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

| L | st | T | lCs |
|---|----|---|-----|
|   |    |   |     |

| Sample ID | Compound | Sample ID | Compound |
|-----------|----------|-----------|----------|
|           |          |           |          |
|           |          |           |          |
|           |          |           |          |

#### Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
  - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
  - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

| All criteria were met> | $\subseteq$ |
|------------------------|-------------|
| Criteria were not met  |             |
| and/or see below       |             |

# SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

#### Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

| Criteria                | Action                    |                           |  |
|-------------------------|---------------------------|---------------------------|--|
| Cineria                 | Detects Non-detect        |                           |  |
| %Solids < 10.0%         | Use professional judgment | Use professional judgment |  |
| 10.0% ≤ %Solids ≤ 30.0% | Use professional judgment | Use professional judgment |  |
| %Solids > 30.0%         | No qualification          | No qualification          |  |

#### SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

# **QUANTITATION LIMITS**

# A. Dilution performed

| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DILUTION<br>FACTOR | REASON FOR DILUTION |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
| 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
| To the same of the |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |

| All criteria were met _ | X         |
|-------------------------|-----------|
| Criteria were not met   | 50° = =0° |
| and/or see below        |           |
|                         |           |

### FIELD DUPLICATE PRECISION

| Sample IDs:JC36373-4/JC36373-5 | Matrix: | _Soil |
|--------------------------------|---------|-------|
|--------------------------------|---------|-------|

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

| COMPOUND                                                                                                                                                   | SQL<br>ug/L | SAMPLE<br>CONC. (ug/l) | DUPLICATE<br>CONC. (ug/l) | RPD | ACTION |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|---------------------------|-----|--------|--|--|--|
|                                                                                                                                                            |             |                        |                           |     |        |  |  |  |
| Field duplicate analyzed as part of this data package. RPD within the required guidance document criteria < 50 % for detected target analytes above 5 SQL. |             |                        |                           |     |        |  |  |  |
|                                                                                                                                                            |             |                        |                           |     |        |  |  |  |

| All criteria were met _ | _X_ | _ |
|-------------------------|-----|---|
| Criteria were not met   |     |   |
| and/or see below        | _   |   |

### OTHER ISSUES

|            | •                  |                      | performance during simple analysis:                                                                     |
|------------|--------------------|----------------------|---------------------------------------------------------------------------------------------------------|
| Sample==== | e ID<br>========   | Comments             | Actions                                                                                                 |
|            |                    | 20.                  |                                                                                                         |
|            |                    |                      |                                                                                                         |
|            | 190                |                      |                                                                                                         |
| Action:    |                    |                      |                                                                                                         |
| during     | sample analyses    |                      | nined that system performance has degraded<br>y Program COR any action as a result of<br>cted the data. |
| В.         | Overall Assessme   | ent of Data          |                                                                                                         |
| List sa    | mples qualified ba | sed on other issues: |                                                                                                         |
| Sample     |                    | Comments             | Actions                                                                                                 |
|            |                    |                      |                                                                                                         |
|            |                    |                      | _dataResults_are_valid_and_can_be_used<br>n_below                                                       |
|            |                    |                      |                                                                                                         |
| Note:      | either was not     |                      | analyzed on 12/28/16. The affected samples was left or extracted outside the method essional judgment.  |

### Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of

- the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
  - The analysis with the lower CRQL
  - The analysis with the better QC results
  - The analysis with the higher results

### **EXECUTIVE NARRATIVE**

SDG No:

JC36373

Laboratory:

**Accutest, New Jersey** 

Analysis:

SW846-8015C

Number of Samples:

Location:

BMSMC, Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary

guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1, MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. RPD for ethanol, isopropyl alcohol, and methanol outside the laboratory control limits. No qualification made based on RPD results, spiked sample from another job.

No MS/MSD samples analyzed for the aqueous matrix. BS/BSD used to assess accuracy.

2. All surrogate recoveries within laboratory control limits except for the cases described in the Data Review Worksheet. Surrogate recovered high in one of the columns in sample JC36373-2. No action taken, no target analyte detected in sample batch.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

**Reviewers Name:** 

Rafael Infante

Chemist License 1888

Signature:

Date:

February 20, 2017

### SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC36373-1

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Methanol          | 220    | ug/kg | 1.0             | -        | U          | Yes        |

Sample ID: JC36373-2

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8015C

| ==                |        |       |                 |          |            |            |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
| Ethanol           | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Methanol          | 220    | ug/kg | 1.0             | -        | U          | Yes        |

Sample ID: JC36373-3

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Methanol          | 210    | ug/kg | 1.0             | _        | U          | Yes        |

Sample ID: JC36373-7

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 110    | ug/kg | 1.0             | -        | υ          | Yes        |
| sec-Butyl Alcohol | 110    | ug/kg | 1.0             | -        | U          | Yes        |
| Methanol          | 210    | ug/kg | 1.0             | -        | U          | Yes        |

Sample ID: JC36373-8

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: Soil

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/kg | 1.0             | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/kg | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/kg | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/kg | 1.0             | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/kg | 1.0             | (7.)     | U          | Yes        |
| Methanol          | 210    | ug/kg | 1.0             | •        | U          | Yes        |

Sample ID: JC36373-9

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ - Equipment Blank

METHOD: 8015C

| Analyte Name      | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|-----------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0             | -        | U          | Yes        |
|                   |        |       |                 |          | -          |            |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0             |          | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0             | -        | U          | Yes        |
| Methanol          | 200    | ug/l  | 1.0             | -        | U          | Yes        |

Sample ID: JC36373-10

Sample location: BMSMC, Humacao, PR

Sampling date: 1/25/2017

Matrix: AQ - Field Blank Soil

METHOD: 8015C

| Analyte Name      | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|-------------------|--------|-------|------------------------|----------|------------|------------|
| Ethanol           | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isobutyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| Isopropyl Alcohol | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Propyl Alcohol  | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| n-Butyl Alcohol   | 100    | ug/l  | 1.0                    | -        | U          | Yes        |
| sec-Butyl Alcohol | 100    | ug/l  | 1.0                    | •        | U          | Yes        |
| Methanol          | 200    | ug/i  | 1.0                    | -        | U          | Yes        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project Number:JC36373                                                                                                                                                                                                                                                               |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date:01/25/2017                                                                                                                                                                                                                                                                      |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shipping Date:01/26/2017                                                                                                                                                                                                                                                             |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA Region: 2                                                                                                                                                                                                                                                                        |                                                                      |
| REVIEW OF VOLATILE Of The following guidelines for evaluating volatile organics were document will assist the reviewer in using professional judgering the needs of the data users. The sample results guidance documents in the following order of preceder Physical/Chemical Methods SW-846 (Final Update III, Deceutilized. The QC criteria and data validation actions listed guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest_and the quality control and performance data summarized. The | e created to delineate required validation acgment to make more informed decision an were assessed according to USEPA data ence: "Test Methods for Evaluating Somber 1996)," specifically for Methods 8000 on the data review worksheets are from the data package received has been | nd in bette<br>a validation<br>did Waste<br>/8015C are<br>the priman |
| Lab. Project/SDG No.:JC36373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample matrix:                                                                                                                                                                                                                                                                       |                                                                      |
| Trip blank No.: Field blank No.:JC36373-10 Equipment blank No.:JC36373-9 Field duplicate No.:                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                      |                                                                      |
| X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                             | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits                                                                                                                                                    |                                                                      |
| Overall Comments:_Low_molecular_weight_alcohols_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | py_SW-846_8015C                                                                                                                                                                                                                                                                      |                                                                      |
| Definition of Qualifiers:  J- Estimated results  U- Compound not detected  R- Rejected data  UJ- Estimated nondetect  Reviewer:                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |                                                                      |
| Date:February_20,_2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |                                                                      |

### DATA COMPLETENESS

| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED |
|---------------------|---------------------|---------------|
|                     |                     |               |
| -                   |                     | ŧ             |
|                     | 200                 |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     | 1                   |               |
|                     |                     |               |
|                     |                     |               |
| 5-7a                |                     |               |
|                     |                     | 3             |
|                     |                     |               |
|                     | 1                   |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     | <u> </u>      |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |
|                     |                     |               |

| All criteria were met_ | X |
|------------------------|---|
| Criteria were not met  |   |
| and/or see below       |   |

### **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID         | DATE SAMPLED          | DATE ANALYZED         | pН         | ACTION                   |
|-------------------|-----------------------|-----------------------|------------|--------------------------|
|                   |                       |                       |            |                          |
| All samples analy | zed within the recomr | nended method holding | g. All sam | ples properly preserved. |
|                   |                       |                       |            |                          |
|                   |                       |                       |            |                          |
|                   |                       |                       |            |                          |
|                   |                       |                       | _          |                          |
|                   |                       |                       |            |                          |
|                   | _                     |                       |            |                          |
|                   |                       |                       |            |                          |

### Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH  $\leq$  2, 4 $^{\circ}$ C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4 $^{\circ}$ C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.6°C

### **Actions**

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

| All criteria were metN. Criteria were not met see below _ |     |
|-----------------------------------------------------------|-----|
| umentation is within the stand                            | arc |
| hin the specified criteria.                               |     |
| <b>3.</b>                                                 |     |
| ata should be accepted, qualif                            | iec |

**GC/MS TUNING** 

The assessment of the tuning results is to determine if the sample instru tuning QC limits \_\_N/A\_ The BFB performance results were reviewed and found to be with \_\_N/A\_ BFB tuning was performed for every 12 hours of sample analysis If no, use professional judgment to determine whether the associated da or rejected. List the samples affected: \_\_\_\_\_

If mass calibration is in error, all associated data are rejected.

| All criteria were met _ | _X_ |  |
|-------------------------|-----|--|
| Criteria were not met   |     |  |
| and/or see below        |     |  |

### CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:             | 10/10/16           |
|------------------------------------------|--------------------|
| Dates of continuing calibration:         | 01/30/17           |
| Dates of final calibration verification: | 10/10/16;_01/30/16 |
| Instrument ID number:                    | GCGH               |
| Matrix/Level:Aqueous                     | s/low              |

| DATE | LAB FILE ID# | CRITERIA OUT<br>RFs, %RSD, %D, r | COMPOUND | SAMPLES<br>AFFECTED |
|------|--------------|----------------------------------|----------|---------------------|
|      |              |                                  |          |                     |
|      |              |                                  |          |                     |
|      |              |                                  |          |                     |

**Note:** Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns. Final calibration verification included in data packages.

### Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be  $\leq$  15 % regardless of method requirements for CCC.

All %Ds must be  $\leq$  20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of  $\geq$  0.995 has therefore been utilized as professional judgment.

### Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met \_\_X\_\_ Criteria were not met and/or see below\_\_\_\_\_

### V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

| DATE<br>ANALYZED | LAB ID        | LEVEL/<br>MATRIX | COMPOUND     | CONCENTRATION UNITS        |
|------------------|---------------|------------------|--------------|----------------------------|
|                  |               |                  | fic_criteria |                            |
| Field/Equipme    | nt/Trip blank |                  |              |                            |
| DATE<br>ANALYZED | LAB ID        | LEVEL/<br>MATRIX | COMPOUND     | CONCENTRATION UNITS        |
|                  |               | _this_data_pac   |              | zed_with_this_data_package |
|                  |               |                  |              |                            |
|                  | 4-646         |                  |              |                            |

| All criteria were met _ | _X_ |  |
|-------------------------|-----|--|
| Criteria were not met   |     |  |
| and/or see below        |     |  |

### VB. BLANK ANALYSIS RESULTS (Section 3)

### Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and  $\le$  AL, report the compound as not detected (U) at the SQL.

If the concentration is  $\geq$  SQL but  $\leq$  AL, report the compound as not detected (U) at the reported concentration.

If the concentration is  $\geq$  SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED<br>SAMPLES |
|----------------------------|----------|------------|----------|-----|---------------------|
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            | 4        | -35 |                     |
|                            |          |            |          | 1   |                     |
|                            |          | _          |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
|                            |          |            |          |     |                     |
| 1                          |          |            |          |     |                     |

| All criteria were met _ | _X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

### SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

| SAMPLE ID    |       | SURROGATE | COMPOUND |     | ACTION |
|--------------|-------|-----------|----------|-----|--------|
|              | Hexar | nol DBFM  | TOL-d8   | BFB |        |
|              | S1 a  | S1 b      |          |     |        |
| JC36373-9    | 119   | 108       |          |     |        |
| JC36373-10   | 117   | 97        |          |     |        |
| GGH5639-BS   | 102   | 102       |          |     |        |
| GGH5639-BSD  | 102   | 105       |          |     |        |
| GGH5639-MB1  | 99    | 111       |          |     |        |
| JC36373-1    | 101   | 107       |          |     |        |
| JC36373-2    | 99    | 143* c    |          |     |        |
| JC36373-3    | 101   | 96        |          |     |        |
| JC36373-7    | 96    | 85        |          |     |        |
| JC36373-8    | 125   | 109       |          |     |        |
| GGH5640-BS   | 100   | 94        |          |     |        |
| GGH5640-MB2  | 95    | 90        |          |     |        |
| JC36372-4MS  | 112   | 109       |          |     |        |
| JC36372-4MSD | 93    | 94        |          |     |        |
| GGH5640-MB1  | 96    | 92        |          |     |        |

- (a) Recovery from GC signal #2
- (b) Recovery from GC signal #1
- (c) High percent recovery and no positive found in sample.

Note: All surrogate recoveries within laboratory control limits except for the cases described in this document. Surrogate recovered high in one of the columns in sample JC36373-2. No action taken, no target analyte detected in sample batch.

| QC Limits* (Aqueous)LL_to_UL                | _56_to_145_ | to | to                            | to |
|---------------------------------------------|-------------|----|-------------------------------|----|
| QC Limits* (Solid-Low)LL_to_UL              |             | to | to                            | to |
| QC Limits* (Solid-Med)                      |             |    | to                            | to |
| 1,2-DCA = 1,2-Dichloro DBFM = Dibromofluoro |             |    | Toluene-d8<br>mofluorobenzene |    |

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

### Actions:

| QUALITY            | %R < 10% | %R = 10% - LL | %R > UL |
|--------------------|----------|---------------|---------|
| Positive results   | J        | J             | J       |
| Nondetects results | R        | UJ            | Accept  |

### Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

| All criteria were met |    |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      | _X |

### VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

| Sample ID:JC36372-4MS/-4MSD    |          |            |          | Matrix/Level:Soil/low |                      |           |
|--------------------------------|----------|------------|----------|-----------------------|----------------------|-----------|
| MS OR MSD                      | COMPOUND | % R        | RPD      | QC LIMITS             | ACTION               |           |
| _MS/MSD_%_re<br>_in_this_docum |          | within_lab | oratory_ | control_limits_exc    | cept_for_the_cases_d | escribed_ |
|                                |          |            | 7,200    |                       |                      |           |

**Note:** RPD for ethanol, isopropyl alcohol, and methanol outside the laboratory control limits. RPD results apply to the unspiked sample, unspiked sample is from another job. No action taken.

No MS/MSD samples analyzed for the aqueous matrix. BS/BSD used to assess accuracy.

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

| All criteria were met _ | _X_ | _ |
|-------------------------|-----|---|
| Criteria were not met   |     |   |
| and/or see below        |     |   |

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

### VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

| Sample ID:                                                                                                     | <del></del>     |          | Matrix/Le | vel/Unit: |        |  |
|----------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------|-----------|--------|--|
| COMPOUND                                                                                                       | SAMPLE<br>CONC. | MS CONC. | MSD CONC. | % RSD     | ACTION |  |
|                                                                                                                |                 |          |           |           |        |  |
|                                                                                                                |                 |          |           |           |        |  |
|                                                                                                                |                 | 77       |           |           |        |  |
|                                                                                                                |                 |          |           |           | ****   |  |
|                                                                                                                | 1:              |          |           |           |        |  |
| Salar Sa |                 |          |           |           | 888    |  |

### Actions:

A separate worksheet should be used for each MS/MSD pair.

<sup>\*</sup> If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

<sup>\*</sup> If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

| All criteria were met _X_ |  |
|---------------------------|--|
| Criteria were not met     |  |
| and/or see below          |  |

### VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

| LCS ID         | COMPOUND             | % R                               | QC LIMIT |   |
|----------------|----------------------|-----------------------------------|----------|---|
| _within_labora | atory_control_limits |                                   |          |   |
|                | •                    |                                   |          |   |
|                | 9502.50(60/00)       | -87.50kg                          |          | _ |
|                | _within_labora       | _within_laboratory_control_limits |          |   |

### Note:

- \* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- \* If QC limits are not available, use limits of 70 130 %.

### Actions:

| QUALITY            | %R < LL | %R > UL |
|--------------------|---------|---------|
| Positive results   | J       | J       |
| Nondetects results | R       | Accept  |

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

|     |                                      | All criteria were metN/A<br>Criteria were not met<br>and/or see below |
|-----|--------------------------------------|-----------------------------------------------------------------------|
| IX. | FIELD/LABORATORY DUPLICATE PRECISION |                                                                       |
|     | Sample IDs:                          | Matrix:                                                               |

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD  $\pm$  30% for aqueous samples, RPD  $\pm$  50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

|               |           |                      |                            | _         |                           |
|---------------|-----------|----------------------|----------------------------|-----------|---------------------------|
| COMPOUND      | SQL       | SAMPLE CONC.         | DUPLICATE CONC.            | RPD       | ACTION                    |
|               |           |                      |                            |           |                           |
| No field/labo | ratory di | uplicates analyzed w | vith this data package. M  | /IS/MSD   | % recovery RPD and        |
| BS/BSD % rec  | overy R   | PD used to assess p  | precision. RPD within lat  | poratory  | control limits except for |
| the cases des | cribed in | this document. The   | RPDs were within gene      | erally ac | ceptable and guidance     |
|               |           | document perfo       | rmance criteria control li | mits.     |                           |
|               |           |                      |                            |           |                           |
|               |           |                      |                            |           |                           |
|               |           |                      |                            |           |                           |

### Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

| ΑI  | criteria | were met   | _N/A |
|-----|----------|------------|------|
| Cri | teria w  | ere not me | it   |
| an  | d/or see | below      |      |

### X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- \* Area of +100% or -50% of the IS area in the associated calibration standard.
- \* Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

| DATE | SAMPLE ID | IS OUT | IS AREA | RANGE       |      |
|------|-----------|--------|---------|-------------|------|
|      |           |        |         |             | - 12 |
|      |           |        |         |             |      |
|      |           |        |         |             |      |
|      |           |        |         |             |      |
|      |           |        |         | - 19 - 19 C |      |
|      |           |        |         |             |      |
| 1000 |           |        |         |             |      |

### Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

| QUALITY             | IS AREA < -25% | IS AREA = -25 %<br>TO - 50% | IS AREA > + 100% |
|---------------------|----------------|-----------------------------|------------------|
| Positive results    | J              | J                           | J                |
| Nondetected results | R              | UJ                          | ACCEPT           |

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

| All criteria were met _ | X_ |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        | 22 |

### XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC36373-1

Hexanol

$$RF = 73.89$$

| All criteria were met _ | _X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        | 10 |

### XII. QUANTITATION LIMITS

### A. Dilution performed

| SAMPLE ID | DILUTION FACTOR | REASON FOR DILUTION |
|-----------|-----------------|---------------------|
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
| 10000     |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           | 100             |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           |                 |                     |
|           | 1               | 1                   |

| Percent Solid  |              |             |  |  |
|----------------|--------------|-------------|--|--|
| List samples v | which have ≤ | 50 % solids |  |  |
|                |              |             |  |  |
|                |              |             |  |  |
|                |              |             |  |  |
|                |              |             |  |  |

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)  $\,$ 

### **EXECUTIVE NARRATIVE**

SDG No:

JC36373

Laboratory:

**Accutest, New Jersey** 

Analysis:

SW846-8081B

Number of Samples:

Location:

BMSMC, Humacao, PR

SUMMARY:

Seven (7) samples were analyzed for the TCL pesticides list following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision O, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary

guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

**Critical findings:** 

None

Major findings:

None

Minor findings:

- 1. Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns. Final calibration verification not included in data package. No action taken.
- 2. MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. No qualifications made, spiked sample from another job.
- **3.** Hepthachlor in sample JC36373-3 more than 40 % RPD concentration between the two columns. Heptachlor detected above the MDL but below the RL, the laboratory qualified the result with a J qualifier. No additional qualification performed.

gamma-BHC in sample JC36373-7 more than 40 % RPD concentration between the two columns. gamma-BHC detected above the MDL but below the RL, the laboratory qualified the result with a J qualifier. No additional qualification performed.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

February 20, 2017

# SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC36373-1
Sample location: BMSMC, Humacao, PR
Sampling date: 25-Jan-17
Matrix: Soil

| Reportable            | Yes    | Yes       | Yes      | Yes       | Yes                 | Yes             | Yes             | Yes      | Yes      | Yes      | Yes      | Yes    | Yes                | Yes             | Yes          | Yes           | Yes        | Yes                | Yes          | Yes           | Yes       |
|-----------------------|--------|-----------|----------|-----------|---------------------|-----------------|-----------------|----------|----------|----------|----------|--------|--------------------|-----------------|--------------|---------------|------------|--------------------|--------------|---------------|-----------|
| Lab Flag Validation   | n      | Ω         | ⊃        | ⊃         | D                   | n               | ⊃               | ⊃        | n        | n        | ⊃        | ⊃      | ⊃                  | J               | D            | ⊃             | ⊃          | n                  | n            | ⊃             | D         |
| Lab Flag              | •      | •         | •        | ι         | •                   | 1               | •               | •        | a        | ,        | •        | 1      | •                  | •               | 1            | •             | •          | •                  | •            | 1             | 1         |
| Jnits Dilution Factor | П      | П         | 1        | П         | 1                   | 1               | П               | П        | П        | П        | Н        | П      | 1                  | П               | П            | П             | ₽          | П                  | П            | 1             | н         |
| Units D               | ug/kg  | ug/kg     | ug/kg    | ug/kg     | ug/kg               | ug/kg           | ug/kg           | ug/kg    | ug/kg    | ug/kg    | ug/kg    | ug/kg  | ug/kg              | ug/kg           | ug/kg        | ug/kg         | ug/kg      | ug/kg              | ug/kg        | ug/kg         | ug/kg     |
| <br>Result            | 69.0   | 0.69      | 69.0     | 69.0      | 69.0                | 69'0            | 69.0            | 69.0     | 69.0     | 69.0     | 69.0     | 69.0   | 69.0               | 69.0            | 69.0         | 69.0          | 69.0       | 69.0               | 1.4          | 69'0          | 17        |
| Analyte Name          | Aldrin | alpha-BHC | beta-BHC | delta-BHC | gamma-BHC (Lindane) | alpha-Chlordane | gamma-Chlordane | Dieldrin | 4,4'-DDD | 4,4'-DDE | 4,4'-DDT | Endrin | Endosulfan sulfate | Endrin aldehyde | Endosulfan-l | Endosulfan-II | Heptachlor | Heptachlor epoxide | Methoxychlor | Endrin ketone | Toxaphene |

Sample ID: JC36373-2 Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17 Matrix: Soil

| Analyte Name | Pocult | I loite f | Inite Dilution Eactor | lah Elag | woite bile V | Octoblo    |
|--------------|--------|-----------|-----------------------|----------|--------------|------------|
|              | uesau  |           | Mution Factor         | Can ridg |              | reportable |
|              | 0.72   | ug/kg     | П                     | •        | ם            | Yes        |
|              | 0.72   | ug/kg     | 1                     | ı        | O            | Yes        |
|              | 0.72   | ug/kg     | 1                     | •        | o            | Yes        |
|              | 0.72   | ug/kg     | 1                     | 1        | ⊃            | Yes        |
|              | 0.72   | ug/kg     | 1                     | ,        | D            | Yes        |
|              | 0.72   | ug/kg     | П                     | ,        | ⊃            | Yes        |
|              | 0.72   | ug/kg     | Н                     | 1        | <b>D</b>     | Yes        |
|              | 0.72   | ug/kg     | Н                     | 1        | D            | Yes        |
|              | 0.72   | ug/kg     | Н                     | 1        | ⊃            | Yes        |
|              | 0.72   | ug/kg     | ₽                     | ı        | D            | Yes        |
|              | 0.72   | ug/kg     | Н                     | 1        | ⊃            | Yes        |
|              | 0.72   | ug/kg     | н                     | 1        | ⊃            | Yes        |
|              | 0.72   | ug/kg     | 1                     | •        | <b>-</b>     | Yes        |
|              | 0.72   | ug/kg     | Н                     |          | ⊃            | Yes        |
|              | 0.72   | ug/kg     | ⊣                     | 100      | ⊃            | Yes        |
|              | 0.72   | ug/kg     | ⊣                     | 1        | ⊃            | Yes        |
|              | 0.72   | ug/kg     | П                     | •        | n            | Yes        |
|              | 0.72   | ug/kg     | н                     | ı        | J            | Yes        |
|              | 1.4    | ug/kg     | H                     | 1        | )            | Yes        |
|              | 0.72   | ug/kg     | Н                     | 1        | <b>&gt;</b>  | Yes        |
|              | 18     | ug/kg     | 1                     | r.       | D            | Yes        |
|              |        |           |                       |          |              |            |

Sample ID: JC36373-3
Sample location: BMSMC, Humacao, PR
Sampling date: 25-Jan-17
Matrix: Soil

| Ċ  | ľ | 3 |
|----|---|---|
| _  |   | ā |
| 2  |   | 2 |
| Š  | Κ | , |
| Ö  | 7 | ٥ |
| Ä  | 7 | S |
| ٠  | ٠ | • |
|    |   |   |
| 3  | _ |   |
| Ľ  |   | 3 |
| 2  |   | Š |
| ١, |   | ı |
| =  |   | - |
| =  |   | - |
| г  | - | - |
| L  | L | J |
| q  | ě | - |
| 2  | 2 | Þ |
| -  |   | - |

|                     | Ś      |           |                       |          |            |            |
|---------------------|--------|-----------|-----------------------|----------|------------|------------|
| Analyte Name        | Result | Units Dil | Jnits Dilution Factor | Lab Flag | Validation | Reportable |
| Aldrin              | 0.70   | ug/kg     | 1                     | 1        | n          | Yes        |
| alpha-BHC           | 0.70   | ug/kg     | П                     | ,        | n          | Yes        |
| beta-BHC            | 0.70   | ug/kg     | П                     | ,        | n          | Yes        |
| delta-BHC           | 0.70   | ug/kg     | П                     | ,        | O          | Yes        |
| gamma-BHC (Lindane) | 0.70   | ug/kg     | П                     | 1        | n          | Yes        |
| alpha-Chlordane     | 0.70   | ug/kg     | П                     | r        | n          | Yes        |
| gamma-Chlordane     | 0.70   | ug/kg     | П                     | 9        | n          | Yes        |
| Dieldrin            | 0.70   | ug/kg     | П                     | r        | n          | Yes        |
| 4,4'-DDD            | 0.70   | ug/kg     | П                     | •        | n          | Yes        |
| 4,4'-DDE            | 0.70   | ug/kg     | П                     | ٠        | n          | Yes        |
| 4,4'-DDT            | 0.70   | ug/kg     | П                     | 1        | )          | Yes        |
| Endrin              | 0.70   | ug/kg     | Н                     | ï        | <b>-</b>   | Yes        |
| Endosulfan sulfate  | 0.70   | ug/kg     | П                     | ,        | )          | Yes        |
| Endrin aldehyde     | 0.70   | ug/kg     | 1                     | 1        | n          | Yes        |
| Endosulfan-l        | 0.70   | ug/kg     | 1                     |          | n          | Yes        |
| Endosulfan-II       | 0.70   | ug/kg     | 1                     | ,        | n          | Yes        |
| Heptachlor          | 0.69   | ug/kg     | П                     | _        | _          | Yes        |
| Heptachlor epoxide  | 0.70   | ug/kg     | П                     | ,        | n          | Yes        |
| Methoxychlor        | 1.4    | ug/kg     | н                     | e        | n          | Yes        |
| Endrin ketone       | 0.70   | ug/kg     | Н                     | a.       | n          | Yes        |
| Toxaphene           | 17     | ug/kg     | Н                     | £        | O          | Yes        |
|                     |        |           |                       |          |            |            |

Sample ID: JC36373-7
Sample location: BMSMC, Humacao, PR
Sampling date: 25-Jan-17
Matrix: Soil

Sample ID: JC36373-8
Sample location: BMSMC, Humacao, PR
Sampling date: 25-Jan-17
Matrix: Soil

| Analyte Name        | Result | Units | Jnits Dilution Factor | Lab Flag | Lab Flag Validation | Reportable |  |
|---------------------|--------|-------|-----------------------|----------|---------------------|------------|--|
| Aldrin              | 0.67   | ug/kg | 1                     | ٠        | )                   | Yes        |  |
| alpha-BHC           | 0.67   | ug/kg | 1                     | •        | ב                   | Yes        |  |
| beta-BHC            | 0.67   | ug/kg | ₽                     | •        | ⊃                   | Yes        |  |
| delta-BHC           | 0.67   | ug/kg | ↔                     | ,        | <b>)</b>            | Yes        |  |
| gamma-BHC (Lindane) | 0.67   | ug/kg | ⊣                     | 1        | <b>-</b>            | Yes        |  |
| alpha-Chlordane     | 0.67   | ug/kg | 1                     | î        | D                   | Yes        |  |
| gamma-Chlordane     | 0.67   | ug/kg | 1                     | ٠        | ⊃                   | Yes        |  |
| Dieldrin            | 0.67   | ug/kg | 1                     |          | ⊃                   | Yes        |  |
| 4,4'-DDD            | 2.0    | ug/kg | <b>~</b>              | ,        | •                   | Yes        |  |
| 4,4'-DDE            | 0.67   | ug/kg | 1                     | ï        | ⊃                   | Yes        |  |
| 4,4'-DDT            | 0.67   | ug/kg | 1                     | ,        | ⊃                   | Yes        |  |
| Endrin              | 0.67   | ug/kg | 1                     | ï        | ⊃                   | Yes        |  |
| Endosulfan sulfate  | 0.67   | ug/kg | ₩                     | •        | ⊃                   | Yes        |  |
| Endrin aldehyde     | 0.67   | ug/kg | П                     | 1        | ח                   | Yes        |  |
| Endosulfan-l        | 0.67   | ug/kg | П                     | ,        | n                   | Yes        |  |
| Endosulfan-II       | 0.67   | ug/kg | ᆏ                     | Ċ        | <b>-</b>            | Yes        |  |
| Heptachlor          | 0.67   | ug/kg | Н                     | •        | n                   | Yes        |  |
| Heptachlor epoxide  | 0.67   | ug/kg | 1                     | ٠        | ⊃                   | Yes        |  |
| Methoxychlor        | 1.3    | ug/kg | П                     |          | ⊃                   | Yes        |  |
| Endrin ketone       | 0.67   | ug/kg | 1                     | E        | ⊃                   | Yes        |  |
| Toxaphene           | 17     | ug/kg | П                     |          | n                   | Yes        |  |

Sample ID: JC36373-9 Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17 Matrix: AQ - Equipment Blank

| Analyte Name        | Result | Units Dilution Factor | ion Factor | Lab Flag | Validation | Reportable |
|---------------------|--------|-----------------------|------------|----------|------------|------------|
| Aldrin              | 0.011  | l/gn                  | ᆏ          |          | D          | Yes        |
| alpha-BHC           | 0.011  | ug/l                  | П          | ı        | ⊃          | Yes        |
| beta-BHC            | 0.011  | ug/l                  | ₩.         | •        | n          | Yes        |
| delta-BHC           | 0.011  | l/gn                  | 1          |          | ⊃          | Yes        |
| gamma-BHC (Lindane) | 0.011  | l/gn                  | 1          | 1        | n          | Yes        |
| alpha-Chlordane     | 0.011  | l/gn                  | 1          | ı        | )          | Yes        |
| gamma-Chlordane     | 0.011  | l/gn                  | 1          | ,        | ⊃          | Yes        |
| Dieldrin            | 0.011  | l/gn                  | 1          | •        | Þ          | Yes        |
| 4,4'-DDD            | 0.011  | ng/l                  | 1          |          | ⊃          | Yes        |
| 4,4'-DDE            | 0.011  | l/gn                  | 7          | 1        | <b>D</b>   | Yes        |
| 4,4'-DDT            | 0.011  | ug/i                  | <b>-</b>   | 1        | <b>D</b>   | Yes        |
| Endrin              | 0.011  | l/gn                  | 1          |          | ⊃          | Yes        |
| Endosulfan sulfate  | 0.011  | l/gn                  | Н          | 1        | ⊃          | Yes        |
| Endrin aldehyde     | 0.011  | l/gn                  | 1          | 1        | D          | Yes        |
| Endrin ketone       | 0.011  | l/gn                  | 1          | •        | >          | Yes        |
| Endosulfan-i        | 0.011  | l/gn                  | 1          | 1        | ⊃          | Yes        |
| Endosulfan-II       | 0.011  | l/gn                  | 1          |          | D          | Yes        |
| Heptachlor          | 0.011  | ng/l                  | H          | 1        | ⊃          | Yes        |
| Heptachlor epoxide  | 0.011  | l/gn                  | 1          | 1        | <b>D</b>   | Yes        |
| Methoxychlor        | 0.022  | l/gn                  | Ħ          | 5        | ⊃          | Yes        |
| Toxaphene           | 0.27   | ug/l                  | 1          | ř.       | ס          | Yes        |

Sample ID: JC36373-10 Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17 Matrix: AQ - Field Blank Soil

| WE TOO              | 21000  |           |                       |          |            |            |
|---------------------|--------|-----------|-----------------------|----------|------------|------------|
| Analyte Name        | Result | Units Dil | Jnits Dilution Factor | Lab Flag | Validation | Reportable |
| Aldrin              | 0.011  | ug/l      | 1                     |          | D          | Yes        |
| alpha-BHC           | 0.011  | ng/l      | 1                     | 1        | ⊃          | Yes        |
| beta-BHC            | 0.011  | l/8n      | Т                     |          | ב          | Yes        |
| delta-BHC           | 0.011  | ug/i      | 1                     |          | ⊃          | Yes        |
| gamma-BHC (Lindane) | 0.011  | l∕8n      | 1                     | •        | ⊃          | Yes        |
| alpha-Chlordane     | 0.011  | ug/l      | 1                     | 1        | D          | Yes        |
| gamma-Chlordane     | 0.011  | l∕8n      | 1                     | •        | ⊃          | Yes        |
| Dieldrin            | 0.011  | l∕8n      | 1                     | ï        | ⊃          | Yes        |
| 4,4'-DDD            | 0.011  | l∕gn      | 1                     | •        | ⊃          | Yes        |
| 4,4'-DDE            | 0.011  | ng/l      | н                     | 1        | ⊃          | Yes        |
| 4,4'-DDT            | 0.011  | ng/l      | Н                     | •        | ⊃          | Yes        |
| Endrin              | 0.011  | ug/l      | Н                     | •        | ⊃          | Yes        |
| Endosulfan sulfate  | 0.011  | ug/l      | П                     | ı        | ⊃          | Yes        |
| Endrin aldehyde     | 0.011  | ng/l      | Н                     | a.       | ⊃          | Yes        |
| Endrin ketone       | 0.011  | ng/l      | Н                     | c        | n          | Yes        |
| Endosulfan-i        | 0.011  | ng/l      | Н                     | (r       | ⊃          | Yes        |
| Endosulfan-II       | 0.011  | l∕Bn      | Н                     | ř.       | ⊃          | Yes        |
| Heptachlor          | 0.011  | ng∕l      | Н                     |          | ⊃          | Yes        |
| Heptachlor epoxide  | 0.011  | l/gn      | н                     | je:      | ⊃          | Yes        |
| Methoxychlor        | 0.022  | ng/l      | Н                     | ī        | ⊃          | Yes        |
| Toxaphene           | 0.27   | l∕gn      | ₽                     | ¢        | ⊃          | Yes        |
|                     |        |           |                       |          |            |            |

|                                                                                                                                                                                                                                                                                                                                                                                                    | Project/CasNumber:JC36373<br>Sampling Date:01/25/2017<br>Shipping Date:01/26/17                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                    | EPA Region No.:2                                                                                                                                                                                             |
| REVIEW OF PESTICIDE ORG                                                                                                                                                                                                                                                                                                                                                                            | BANIC PACKAGE                                                                                                                                                                                                |
| The following guidelines for evaluating volatile organization actions. This document will assist the revenue make more informed decision and in better service sample results were assessed according to USEPA the following order of precedence Hazardous Was Revision 0, June, 2015. SOM02.2. Pesticide Data validation actions listed on the data review work document, unless otherwise noted. | viewer in using professional judgment to<br>ring the needs of the data users. The<br>A data validation guidance documents in<br>aste Support Section SOP No. HW-36A,<br>Validation. The QC criteria and data |
| The hardcopied (laboratory name) _Accutest                                                                                                                                                                                                                                                                                                                                                         | data package received has been arized. The data review for VOCs included:                                                                                                                                    |
| Lab. Project/SDG No.:JC36373 No. of Samples:7                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              |
| X Data CompletenessX Holding TimesN/A GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate  Overall Comments:TCL_pesticides_list_by_SW846-80                                                                                                                                                                                             | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                              | und not detected<br>ted nondetect                                                                                                                                                                            |

### DATA COMPLETENESS

| MISSING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE LAB. CONTACTED | DATE RECEIVED |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E 1825              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 5 M - CM -    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 913.4 W/s           |               |
| Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · -                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                   |               |
| No. of the last of |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 320 28        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <u> </u>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | ( )           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | -             |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |               |

| All criteria were met _ | .X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

### HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID        | DATE<br>SAMPLED    | DATE EXTRACTED/ANALYZED        | ACTION                      |
|------------------|--------------------|--------------------------------|-----------------------------|
| Samples properly | preserved. All sam | ples extracted and analyzed wi | thin the required criteria. |
|                  |                    |                                |                             |
|                  |                    |                                | NA                          |
|                  |                    |                                |                             |
|                  |                    |                                |                             |
|                  |                    |                                |                             |

### Note:

### Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 3.6°C - OK

### **Actions**

# Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ( $T = 4^{\circ}C \pm 2^{\circ}C$ ), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ( $T = 4^{\circ}C \pm 2^{\circ}C$ ), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

## Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved ( $T = 4^{\circ}C \pm 2^{\circ}C$ ), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ( $T = 4^{\circ}C \pm 2^{\circ}C$ ), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

|          | All criteria were met  | X_ |  |
|----------|------------------------|----|--|
| Criteria | were not met see helow |    |  |

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

### 1. Resolution Check Mixture

### Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

### Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

### 2. Performance Evaluation Mixture (PEM) Resolution Criteria

### Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

### Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

### Criteria

Is PEM % Resolution < 90%?

Yes? or No?

### Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

| All o        | riteria wei | re met_  | x_ |
|--------------|-------------|----------|----|
| Criteria wen | e not met   | see belo | w  |

## 3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

# 4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated(J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

| All criteria were met _        | _X |
|--------------------------------|----|
| Criteria were not met see beld | w  |

## 5. Mid-point Individual Standard Mixture Resolution -

## Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

## Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

## Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

## Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

| All criteria were met | _X |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      | -  |

## CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:          | 01/23/17                      | 11/15/16    |
|---------------------------------------|-------------------------------|-------------|
| Dates of initial calibration verifica | tion:01/23/17                 | 11/15/16    |
| Dates of continuing calibration:      | _02/01/17:_02/02/17;_02/07/17 | 02/02/17    |
| Dates of final calibration            |                               | 02/02/17    |
| Instrument ID numbers:                | GC4G                          | GC8H        |
| Matrix/Level:                         | Aqueous/low                   | Aqueous/low |

| DATE | LAB<br>ID# | FILE | CRITERIA OUT<br>RFs, %RSD, %D, r | COMPOUND | SAMPLES AFFECTED |
|------|------------|------|----------------------------------|----------|------------------|
|      |            |      |                                  |          |                  |

**Note:** Initial and initial calibration verification within the guidance document performance criteria. Continuing calibration % differences meet the performance criteria in at least one of the two columns.

Final calibration verification not included in data package. No action taken.

Endrin ketone %D in continuing calibration check (cc2009-25; 02/02/17) was outside the method performance criteria. No sample analyzed during this batch.

## Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015? Yes? or No?

## Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

## Criteria

Are RT Windows calculated correctly?

Yes? or No?

## Action

Recalculate the windows and use the corrected values for all evaluations.

## Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

| All criteria were metX_ |  |
|-------------------------|--|
| Criteria were not met   |  |
| and/or see below        |  |

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%. Yes? or No?

## Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

# **Continuing Calibration Checks**

## Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

## Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

## Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

## Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

## Action

Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

## Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

## Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

## Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

## Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

## Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

## Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

## Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

## Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

| All criteria were metX_ |  |
|-------------------------|--|
| Criteria were not met   |  |
| and/or see below        |  |

# BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

| List the contami | nation in the bla                       | anks below. Hig  | h and low levels blanks | must be treated separately.  |
|------------------|-----------------------------------------|------------------|-------------------------|------------------------------|
| CRQL concentr    | ationN                                  | /A               |                         |                              |
| Laboratory blan  | ks                                      |                  |                         |                              |
| DATE<br>ANALYZED | LAB ID                                  | LEVEL/<br>MATRIX | COMPOUND                | CONCENTRATION UNITS          |
| _ug/L            |                                         |                  |                         | nit_of_0.01,_0.02,_and_0.25_ |
| Field/Equipme    |                                         | LEVEL/           |                         | CONCENTRATION                |
| ANALYZED         | outo dotootod ii                        | MATRIX           | inmont blanks analyza   | UNITS                        |
| arget_ana        | ayte_detected_i                         | n_me_neia/equ    | ipmem_bianks_analyze    | d_with_this_data_package<br> |
|                  |                                         |                  |                         |                              |
|                  |                                         |                  |                         |                              |
|                  |                                         |                  |                         |                              |
|                  |                                         |                  |                         |                              |
|                  | *************************************** |                  |                         |                              |

| All criteria were metX_ |   |
|-------------------------|---|
| Criteria were not met   | 1 |
| and/or see below        |   |

# BLANK ANALYSIS RESULTS (Section 3)

## Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10  $\mu$ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

# **Blank Actions for Pesticide Analyses**

| Blank Type                                                    | Blank Result        | Sample Result                    | Action for Samples                                   |
|---------------------------------------------------------------|---------------------|----------------------------------|------------------------------------------------------|
|                                                               | Detects             | Not detected                     | No qualification required                            |
|                                                               | < CRQL              | < CRQL                           | Report CRQL value with a U                           |
|                                                               |                     | ≥ CRQL                           | No qualification required                            |
| Method, Sulfur<br>Cleanup,<br>Instrument, Field,<br>TCLP/SPLP |                     | < CRQL                           | Report CRQL value with a U                           |
|                                                               | > CRQL              | ≥ CRQL and ≤ blank concentration | Report blank value for sample concentration with a U |
|                                                               |                     | ≥ CRQL and > blank concentration | No qualification required                            |
|                                                               | = CRQL              | ≤CRQL                            | Report CRQL value with a U                           |
|                                                               |                     | > CRQL                           | No qualification required                            |
|                                                               | Gross contamination | Detects                          | Report blank value for sample concentration with a U |

| All criteria were metX |  |
|------------------------|--|
| Criteria were not met  |  |
| and/or see below       |  |

| CONTAMINATION SOURCE/LEVEL | COMPOUND | CONC/UNITS | AL/UNITS | SQL | AFFECTED SAMPLES |
|----------------------------|----------|------------|----------|-----|------------------|
|                            |          |            |          |     |                  |
|                            |          |            |          |     |                  |
|                            |          |            |          |     |                  |
|                            |          |            |          |     |                  |
|                            |          |            |          |     |                  |
|                            |          |            |          |     |                  |
|                            |          |            |          |     |                  |

All criteria were met \_\_X\_\_ Criteria were not met and/or see below \_\_\_\_

## SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

| Matrix:_Aqueous/Solid_  |           |        |           |         |      |                          |
|-------------------------|-----------|--------|-----------|---------|------|--------------------------|
| Lab                     | Lab       |        |           |         |      |                          |
| Sample ID               | File ID   | S1 a   | S1 b      | S2 a    | S2 b |                          |
| JC36373-9               | 8G2633.D  | 81     | 83        | 43      | 38   |                          |
| JC36373-10              | 8G2634.D  | 85     | 86        | 55      | 47   |                          |
| OP233-BS1               | 8G2577.D  | 87     | 76        | 102     | 80   |                          |
| OP233-MB1               | 8G2576.D  | 88     | 81        | 71      | 61   |                          |
| OP233-MB1               | 4G77729.D | 96     | 92        | 71      | 70   |                          |
| OP233-MS                | 8G2631.D  | 83     | 85        | 106     | 90   |                          |
| OP233-MSD               | 8G2632.D  | 85     | 85        | 102     | 87   |                          |
| JC36373-1               | 4G77553.D | 91     | 85        | 94      | 78   |                          |
| JC36373-2               | 4G77554.D | 79     | 79        | 94      | 66   |                          |
| JC36373-3               | 4G77555.D | 88     | 83        | 114     | 81   |                          |
| JC36373-7               | 4G77556.D | 83     | 79        | 103     | 79   |                          |
| JC36373-8               | 4G77557.D | 85     | 79        | 111     | 76   |                          |
| OP215-BS1               | 4G77546.D | 91     | 85        | 122     | 97   |                          |
| OP215-MB1               | 4G77545.D | 88     | 81        | 125     | 92   |                          |
| OP215-MS                | 4G77551.D | 83     | 76        | 112     | 78   |                          |
| OP215-MSD               | 4G77552.D | 88     | 80        | 103     | 69   |                          |
| Surrogate Compounds     |           | Recove | ery Limit | s (Aque | ous) | Recovery limits (Solids) |
| S1 = Tetrachloro-m-xyle |           | 13-153 |           |         |      | 24-136 %                 |
| S2 = Decachlorobiphen   | yl        | 10-138 | %         |         |      | 10-153 %                 |

<sup>(</sup>a) Recovery from GC signal #1

**Note:** Surrogate recoveries were within laboratory control limits.

<sup>(</sup>b) Recovery from GC signal #2

## Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.
- c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.
- d. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify detected target compounds as biased low (J-).
- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
  - i. Qualify detected target compounds as biased low (J-).
  - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

# Summary Surrogate Actions for Pesticide Analyses

|                                         | Action*                   |                     |  |  |
|-----------------------------------------|---------------------------|---------------------|--|--|
| Criteria                                | Detected Target           | Non-detected Target |  |  |
|                                         | Compounds                 | Compounds           |  |  |
| %R > 150%                               | J+                        | No qualification    |  |  |
| 30% < %R < 150%                         | No qualification          |                     |  |  |
| 10% < %R < 30%                          | J-                        | UJ                  |  |  |
| %R < 10% (sample dilution not a factor) | J-                        | R                   |  |  |
| %R < 10% (sample dilution is a factor)  | Use professional judgment |                     |  |  |
| RT out of RT window                     | Use professional judgment |                     |  |  |
| RT within RT window                     | No qua                    | alification         |  |  |

\* Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

| All criteria were met |    |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      | _X |

Method: SW846 8081B

## MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

## MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

**NOTE:** For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

| Sample ID: | _JC36372-4MS/MSD | Matrix/Level:Soil     |
|------------|------------------|-----------------------|
| Sample ID: | _JC36371-2MS/MSD | Matrix/Level:_Aqueous |

# The QC reported here applies to the following samples: JC36373-1, JC36373-2, JC36373-3, JC36373-4

| Compound | JC36372-4<br>ug/kg Q |    | MS<br>ug/kg | MS<br>% | Spike<br>ug/kg | MSD<br>ug/kg | MSD<br>% | RPD   | Limits<br>Rec/RPD |
|----------|----------------------|----|-------------|---------|----------------|--------------|----------|-------|-------------------|
| Aldrin   | ND                   | 19 | 46.9        | 247* a  | 19             | 17.0         | 90       | 94* a | 23-143/44         |
| heta-BHC | ND                   | 19 | 9.0         | 47      | 19             | 16.9         | 89       | 61* a | 7-143/48          |

<sup>(</sup>a) Outside the QC limits.

**Note:** MS/MSD % recoveries and RPD within laboratory control limits except for the cases described in this document. Results apply to unspiked sample. Unspiked sample was from another job. No qualifications made.

## Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

<sup>\*</sup> Outside QC limits

| All criteria were met _X_ |  |
|---------------------------|--|
| Criteria were not met     |  |
| and/or see below          |  |

# LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

## 1. LCS Recoveries Criteria

| LCS Spike Compound               | Recovery Limits (%) |
|----------------------------------|---------------------|
| gamma-BHC                        | 50 – 120            |
| Heptachlor epoxide               | 50 – 150            |
| Dieldrin                         | 30 – 130            |
| 4,4'-DDE                         | 50 – 150            |
| Endrin                           | 50 – 120            |
| Endosulfan sulfate               | 50 – 120            |
| trans-Chlordane                  | 30 – 130            |
| Tetrachloro-m-xylene (surrogate) | 30 – 150            |
| Decachlorobiphenyl (surrogate)   | 30 – 150            |

| LCS I    | D           | COMPOUND               | % R             | QC LIMIT |
|----------|-------------|------------------------|-----------------|----------|
| %_recov  | ery_and_F   | RPD_within_laboratory_ | _control_limits |          |
| /6_TECUV | reiy_allu_r | KPD_Within_taboratory_ |                 |          |

## Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

# 2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

| All criteria were met |
|-----------------------|
| Criteria were not met |
| and/or see belowN/A   |

## FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

## Criteria

Is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent? Yes? or No? N/A

## Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No? N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

## Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note:\_ No information for Florisil cartridge performance check included in data package.

There is evidence that Florisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

| All criteria were met |  |
|-----------------------|--|
| Criteria were not met |  |
| and/or see below      |  |

## GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

## Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

| All criteria were met _ | _X |
|-------------------------|----|
| Criteria were not met   |    |
| and/or see below        |    |

## TARGET COMPOUND IDENTIFICATION

#### Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

  Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ±0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ±0.10 minutes of the RT determined from the initial calibration?

  Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of ± 25.0 %?

  Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

  Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

  Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale? Yes? or No? N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

  Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

  Yes? or No?

## Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
  - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

# GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

## Action:

- a. If the quantitative criteria for both columns were met ( $\geq$  5.0 ng/ $\mu$ L for SCPs and  $\geq$  125 ng/ $\mu$ L for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
  - If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
  - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

| All criteria were met | _X |
|-----------------------|----|
| Criteria were not met |    |
| and/or see below      | -2 |

# COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

| JC36 | 373-1 | Tetrachlorobiphenyl                    | RF =0.946 |
|------|-------|----------------------------------------|-----------|
| []   | =     | (293.4 x 106)(50)/(425.2 x 106)(0.946) |           |
|      | =     | 36.5 ppb Ok                            |           |

Note: Hepthachlor in sample JC36373-3 more than 40 % RPD concentration between the two columns. Heptachlor detected above the MDL but below the RL, the laboratory qualified the result with a J qualifier. No additional qualification performed.

gamma-BHC in sample JC36373-7 more than 40 % RPD concentration between the two columns, gamma-BHC detected above the MDL but below the RL, the laboratory qualified the result with a J qualifier. No additional qualification performed.

## Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

# Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

| Criteria                 |                               | Action                            |  |  |
|--------------------------|-------------------------------|-----------------------------------|--|--|
|                          | Detected Associated Compounds | Non-detected Associated Compounds |  |  |
| % Moisture < 70.0        | No qualification              |                                   |  |  |
| 70.0 < % Moisture < 90.0 | J                             | UJ                                |  |  |
| % Moisture > 90.0        | J                             | R                                 |  |  |

|      | _ |  |
|------|---|--|
| <br> |   |  |

Note: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

# Dilution performed

| SAMPLE ID | DILUTION FACTOR | REASON FOR DILUTION                   |
|-----------|-----------------|---------------------------------------|
|           |                 | <u> </u>                              |
|           |                 |                                       |
|           | <u> </u>        |                                       |
|           |                 | · · · · · · · · · · · · · · · · · · · |
|           |                 |                                       |
|           |                 |                                       |
|           |                 |                                       |
|           |                 |                                       |
| ,         |                 |                                       |
|           |                 | +                                     |
|           |                 | -                                     |
|           |                 |                                       |
|           |                 |                                       |
|           |                 |                                       |
|           |                 |                                       |
|           |                 |                                       |
|           | 1               |                                       |
|           |                 |                                       |
|           |                 |                                       |

| All criteria were metN/A_ |  |
|---------------------------|--|
| Criteria were not met     |  |
| and/or see below          |  |

## FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

| Sample IDs:                                                                                  | :    | -      |           | Mat | rix:   |  |
|----------------------------------------------------------------------------------------------|------|--------|-----------|-----|--------|--|
| COMPOUND                                                                                     | SQL  | SAMPLE | DUPLICATE | RPD | ACTION |  |
|                                                                                              | ug/L | CONC.  | CONC.     |     |        |  |
| -                                                                                            |      |        |           |     |        |  |
|                                                                                              |      |        |           |     |        |  |
| No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to |      |        |           |     |        |  |
| assess precision. RPD within the required criteria of < 50 %.                                |      |        |           |     |        |  |
|                                                                                              |      |        |           |     |        |  |
|                                                                                              |      |        |           |     |        |  |

## Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
  - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
  - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
  - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
  - iv. If both sample and duplicate results are not detected, no action is needed.

# OVERALL ASSESSMENT OF DATA Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data: Results are valid; the data can be used for decision

making purposes.

#### **EXECUTIVE NARRATIVE**

SDG No: JC36373 Laboratory: Accutest, New Jersey

Analysis: SW846-8015C Number of Samples: 5

Location: BMSMC, Humacao, PR

SUMMARY: Five (5) samples were analyzed for the trace metals following method SW846-6010C and

SW846-7470A/7471B for Hg. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Hazardous Waste Support Section SOP NO. HW-3b Revision O (July 2015) ISMO2 ICP-MS Data Validation; USEPA Contract Laboratory program National Functional Guidelines for Inorganic data Review (OSWER 9240.1-45, EPA 540-R-04-004, October 2004- Final). Validation of Metal for the Contract Laboratory Program (CLP) (SOP HW-2, Revision 13. Based on ILM05.3 (August 2009). Quality control validation criteria were derived from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update IV, 1998)". The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

Major: Minor: None None

None

Critical findings: Major findings:

None None

Minor findings:

- 1. Target analytes not detected in the field/equipment blank except for the cases described in this document:
  - Al, Ba, Ca, Mn, Hg, and Na detected in the field blank at a concentration below the reporting limit. The laboratory qualified the results with a B qualifier. No further
  - Al, Ba, Ca, Mn, Hg and Na detected in the equipment blank at a concentration below the reporting limit.

The laboratory qualified the results with a B qualifier. No further qualification performed.

2. MS/MSD % recovery and RPD within laboratory control limits except for the cases described in the Data Review Worksheet. No action taken spike sample was from another job.

No MS/MSD sample analyzed for the aqueous matrix, except for Hg.

**3.** Positive results with concentration between the MDL and the reporting limit (RL) are qualified as estimated (J or UJ).

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Signature:

Date: February 20, 201

# SAMPLE METAL DATA SAMPLE SUMMARY

Sample ID: JC36373-4

Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17

Matrix: Soil

| memor.       | 00100,747 | 10    |                        |          |            |            |
|--------------|-----------|-------|------------------------|----------|------------|------------|
| Analyte Name | Result    | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
| Aluminum     | 11900     | ug/kg | 1.0                    | -        | ,          | Yes        |
| Antimony     | 0.42      | ug/kg | 1.0                    | В        | JB] 🗸      | / Yes      |
| Arsenic      | 5.3       | ug/kg | 1.0                    | -        | -          | Yes        |
| Barium       | 92.9      | ug/kg | 1.0                    | -        | -          | Yes        |
| Beryllium    | 0.25      | ug/kg | 1.0                    | -        | -          | Yes        |
| Cadmium      | 0.66      | ug/kg | 1.0                    | -        | •          | Yes        |
| Calcium      | 2200      | ug/kg | 1.0                    | -        | -          | Yes        |
| Chromium     | 9.6       | ug/kg | 1.0                    | -        | - /        | Yes        |
| Cobalt       | 5.6       | ug/kg | 1.0                    | В        | JB √ ₁     | Yes        |
| Copper       | 20        | ug/kg | 1.0                    | -        | -          | Yes        |
| Iron         | 16000     | ug/kg | 2.0                    | -        | -          | Yes        |
| Lead         | 13.2      | ug/kg | 1.0                    | -        | -          | Yes        |
| Magnesium    | 1410      | ug/kg | 1.0                    | -        | -          | Yes        |
| Manganese    | 432       | ug/kg | 1.0                    | -        | •          | Yes        |
| Mercury      | 0.14      | ug/kg | 1.0                    | -        | - 1        | / Yes      |
| Nickel       | 3.7       | ug/kg | 1.0                    | В        | JB         | Yes        |
| Potassium    | 735       | ug/kg | 1.0                    | В        | JB / y     | Yes        |
| Selenium     | 0.53      | ug/kg | 1.0                    | U        | U          | Yes        |
| Silver       | 0.31      | ug/kg | 2.0                    | U        | U          | / Yes      |
| Sodium       | 73.3      | ug/kg | 1.0                    | В        | JB 🔧       | Yes        |
| Thallium     | 0.45      | ug/kg | 1.0                    | U        | U          | Yes        |
| Vanadium     | 44.8      | ug/kg | 1.0                    | -        | -          | Yes        |
| Zinc         | 121       | ug/kg | 1.0                    | E.       | -          | Yes        |

Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17

Matrix: Soil

| Analyte Name | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|--------------|--------|-------|------------------------|----------|------------|------------|
| Aluminum     | 13000  | ug/kg | 1.0                    | -        | -          | Yes        |
| Antimony     | 0.32   | ug/kg | 1.0                    | -        | U          | Yes        |
| Arsenic      | 5.4    | ug/kg | 1.0                    | -        | -          | Yes        |
| Barium       | 107    | ug/kg | 1.0                    | -        | -          | Yes        |
| Beryllium    | 0.25   | ug/kg | 1.0                    | -        | -          | Yes        |
| Cadmium      | 0.73   | ug/kg | 1.0                    | -        | -          | Yes        |
| Calcium      | 2500   | ug/kg | 1.0                    | -        | -          | Yes        |
| Chromium     | 16.4   | ug/kg | 1.0                    | •        | -          | Yes        |
| Cobalt       | 6.5    | ug/kg | 1.0                    | -        | -          | Yes        |
| Copper       | 22.3   | ug/kg | 1.0                    | -        | -          | Yes        |
| Iron         | 18100  | ug/kg | 1.0                    | -        | •          | Yes        |
| Lead         | 14.2   | ug/kg | 1.0                    | -        | -          | Yes        |
| Magnesium    | 1710   | ug/kg | 1.0                    | -        | -          | Yes        |
| Manganese    | 512    | ug/kg | 1.0                    | -        | -          | Yes        |
| Mercury      | 0.330  | ug/kg | 1.0                    | -        | -          | Yes        |
| Nickel       | 8.0    | ug/kg | 1.0                    | -        | /          | Yes        |
| Potassium    | 891    | ug/kg | 1.0                    | В        | JB 🗸       | Yes        |
| Selenium     | 0.63   | ug/kg | 1.0                    | В        | JB V       | Yes        |
| Silver       | 0.26   | ug/kg | 1.0                    | В        | JB /       | Yes        |
| Sodium       | 83.8   | ug/kg | 1.0                    | В        | JB /       | Yes        |
| Thallium     | 0.45   | ug/kg | 1.0                    | В        | JB 🗸       | Yes        |
| Vanadium     | 52.0   | ug/kg | 1.0                    | -        | -          | Yes        |
| Zinc         | 129    | ug/kg | 1.0                    | -        | -          | Yes        |

Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17

Matrix: Soil

| Analyte Name | Result | Units | Dilution Factor | Lab Flag | Validation | Reportable |
|--------------|--------|-------|-----------------|----------|------------|------------|
| Aluminum     | 22700  | ug/kg | 1.0             | -        | -          | Yes        |
| Antimony     | 0.36   | ug/kg | 1.0             | -        | U          | Yes        |
| Arsenic      | 5.2    | ug/kg | 1.0             | -        | -          | Yes        |
| Barium       | 116    | ug/kg | 1.0             | -        | -          | Yes        |
| Beryllium    | 0.25   | ug/kg | 1.0             | -        | -          | Yes        |
| Cadmium      | 0.29   | ug/kg | 1.0             | В        | JB √       | / Yes      |
| Calcium      | 4130   | ug/kg | 1.0             | -        | -          | Yes        |
| Chromium     | 16.1   | ug/kg | 1.0             | -        | -          | Yes        |
| Cobalt       | 11.5   | ug/kg | 1.0             | -        | -          | Yes        |
| Copper       | 48.8   | ug/kg | 1.0             | -        | -          | Yes        |
| Iron         | 25500  | ug/kg | 1.0             | -        | -          | Yes        |
| Lead         | 8.8    | ug/kg | 1.0             | -        | -          | Yes        |
| Magnesium    | 3110   | ug/kg | 1.0             | -        | -          | Yes        |
| Manganese    | 625    | ug/kg | 1.0             | -        | 57         | Yes        |
| Mercury      | 0.04   | ug/kg | 1.0             | -        | -          | Yes        |
| Nickel       | 6.9    | ug/kg | 1.0             | -        | - /        | Yes        |
| Potassium    | 665    | ug/kg | 1.0             | В        | JB 🗸       | Yes        |
| Selenium     | 0.75   | ug/kg | 1.0             | В        | JB 🗸       | Yes        |
| Silver       | 0.52   | ug/kg | 1.0             | В        | JB V       | Yes        |
| Sodium       | 206    | ug/kg | 1.0             | В        | JB V       | Yes        |
| Thallium     | 1.1    | ug/kg | 1.0             | В        | JB 🗸 🧸     | Yes        |
| Vanadium     | 85.9   | ug/kg | 1.0             | -        | _          | Yes        |
| Zinc         | 61.1   | ug/kg | 1.0             | -        | -          | Yes        |

Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17

Matrix: AQ -Equipment Blank

| Analyte Name | Result | Units | <b>Dilution Factor</b> | Lab Flag | Validation | Reportable |
|--------------|--------|-------|------------------------|----------|------------|------------|
| Aluminum     | 35.2   | ug/l  | 1.0                    | В        | JB 🗸       | Yes        |
| Antimony     | 3.3    | ug/l  | 1.0                    | U        | U          | Yes        |
| Arsenic      | 2.2    | ug/l  | 1.0                    | U        | U          | Yes        |
| Barium       | 1.4    | ug/l  | 1.0                    | В        | JB 🗸       | Yes        |
| Beryllium    | 0.25   | ug/l  | 1.0                    | U        | U          | Yes        |
| Cadmium      | 0.4    | ug/l  | 1.0                    | U        | U          | Yes        |
| Calcium      | 283    | ug/l  | 1.0                    | В        | JB ✓       | Yes        |
| Chromium     | 0.81   | ug/l  | 1.0                    | U        | U          | Yes        |
| Cobalt       | 0.69   | ug/l  | 1.0                    | U        | U          | Yes        |
| Copper       | 2.4    | ug/l  | 1.0                    | U        | U          | Yes        |
| Iron         | 12     | ug/l  | 1.0                    | U        | U          | Yes        |
| Lead         | 2.3    | ug/l  | 1.0                    | U        | U          | Yes        |
| Magnesium    | 85     | ug/l  | 1.0                    | U        | U          | Yes        |
| Manganese    | 8.8    | ug/l  | 1.0                    | В        | JB √       | Yes        |
| Mercury      | 0.056  | ug/l  | 1.0                    | В        | JB         | Yes        |
| Nickel       | 0.76   | ug/l  | 1.0                    | U        | U          | Yes        |
| Potassium    | 120    | ug/l  | 1.0                    | U        | U          | Yes        |
| Selenium     | 4.1    | ug/l  | 1.0                    | U        | U          | Yes        |
| Silver       | 0.88   | ug/l  | 1.0                    | U        | U          | Yes        |
| Sodium       | 208    | ug/l  | 1.0                    | В        | JB         | Yes        |
| Thallium     | 1.9    | ug/l  | 1.0                    | U        | U          | Yes        |
| Vanadium     | 0.66   | ug/l  | 1.0                    | U        | U          | Yes        |
| Zinc         | 1.3    | ug/l  | 1.0                    | U        | U          | Yes        |

Sample location: BMSMC, Humacao, PR

Sampling date: 25-Jan-17

Matrix: AQ - Field Blank Soil

| Analyte Name | Result | Units | Dilution Factor | Lab Flag     | Validation | Reportable |
|--------------|--------|-------|-----------------|--------------|------------|------------|
| Aluminum     | 25.3   | ug/l  | 1.0             | В            | JB         | Yes        |
| Antimony     | 3.3    | ug/l  | 1.0             | Ų            | U          | Yes        |
| Arsenic      | 2.2    | ug/l  | 1.0             | U            | U          | Yes        |
| Barium       | 1.7    | ug/l  | 1.0             | 7/1 <b>B</b> | JB ✓       | Yes        |
| Beryllium    | 0.25   | ug/l  | 1.0             | U            | U          | Yes        |
| Cadmium      | 0.4    | ug/l  | 1.0             | U            | U          | Yes        |
| Calcium      | 326    | ug/l  | 1.0             | В            | JB         | Yes        |
| Chromium     | 0.81   | ug/l  | 1.0             | U            | U          | Yes        |
| Cobalt       | 0.69   | ug/l  | 1.0             | U            | U          | Yes        |
| Copper       | 2.4    | ug/l  | 1.0             | U            | U          | Yes        |
| Iron         | 12     | ug/l  | 1.0             | U            | U          | Yes        |
| Lead         | 2.3    | ug/l  | 1.0             | U            | U          | Yes        |
| Magnesium    | 85     | ug/l  | 1.0             | U            | U          | Yes        |
| Manganese    | 9.1    | ug/l  | 1.0             | 8            | JB 🗸       | Yes        |
| Mercury      | 0.059  | ug/l  | 1.0             | В            | _JB ✓      | Yes        |
| Nickel       | 0.76   | ug/l  | 1.0             | U            | U          | Yes        |
| Potassium    | 120    | ug/l  | 1.0             | U            | U          | Yes        |
| Selenium     | 4.1    | ug/l  | 1.0             | U            | U          | Yes        |
| Silver       | 0.88   | ug/l  | 1.0             | U            | U          | Yes        |
| Sodium       | 205    | ug/l  | 1.0             | В            | JB √       | Yes        |
| Thallium     | 1.9    | ug/l  | 1.0             | U            | U          | Yes        |
| Vanadium     | 0.66   | ug/l  | 1.0             | U            | U          | Yes        |
| Zinc         | 1.3    | ug/l  | 1.0             | U            | U          | Yes        |

| Type of validation                                                                                                                                                                                                                                          | Full:X<br>Limited:<br>EPA Region:2_                                                                                                                                                                                                                                                  | Project Number:JC36373 Date:01/25/17 Date shipped:01/26/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| The following guidel sulfide, and/or cyanic assist the reviewer in serving the needs of validation guidance of Section SOP NO. HW Laboratory program 45, EPA 540-R-04-0 Program (CLP) (SOI validation criteria wer Methods SW-846 (Finformation (if availal | ines for evaluating metale were created to deline using professional judgrathe data users. The samplocuments in the following 1-3b Revision 0 (July 2015) National Functional Guide 104, October 2004- Final P HW-2, Revision 13. Ee derived from "Test Metalinal Update IV, 1998)". | als analyses (6010C/6020/7000A series method) eate required validation actions. This document will ment to make more informed decision and in better ole results were assessed according to USEPA data growing order of precedence: Hazardous Waste Support 15) ISM02 ICP-MS Data Validation; USEPA Contract elines for Inorganic data Review (OSWER 9240.1-17). Validation of Metal for the Contract Laboratory Based on ILM05.3 (August 2009). Quality control hods for Evaluating Solid Waste, Physical/Chemical The project QAPP is reviewed for project specific data validation actions listed on the data review turnent, unless otherwise noted. |  |  |  |  |  |  |
| The hardcopied (later reviewed and the quinorganic included:                                                                                                                                                                                                | oratory name) _Accute<br>uality control and perfo                                                                                                                                                                                                                                    | est data package received has been primance data summarized. The data review for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| No. of Samples:<br>Field blank No.:<br>Equipment blank No.:                                                                                                                                                                                                 | .:JC36373<br>5<br>JC36373-10<br>:JC36373-9<br>JC36373-4/ JC3                                                                                                                                                                                                                         | Sample matrix:Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| X Data deliverX Holding TimX CalibrationsX BlanksX ICP InterferX Matrix Spike                                                                                                                                                                               | rables nes s ence Check Results e/Matrix Spike Duplicate                                                                                                                                                                                                                             | X Laboratory DuplicatesX Field DuplicatesX Laboratory Control SamplesX ICP Serial Dilution ResultsX Detection Limits Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                             | wietai_Ailaiyais_(000040-                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Definition of Qualifiers                                                                                                                                                                                                                                    | <b></b>                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| J- Estimated res U- Compound no R- Rejected data UJ- Estimated no E- Laboratory of                                                                                                                                                                          | ot detected<br>a<br>n-detect                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Date:02/20/2017                                                                                                                                                                                                                                             | Date:02/20/2017                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |

|                     |                     | All criteria were metX<br>Criteria were not met<br>and/or see below |
|---------------------|---------------------|---------------------------------------------------------------------|
| I. DATA DELIVERABLE | S                   |                                                                     |
| A. Data Package     | <b>:</b> :          |                                                                     |
| MISSING INFORMATION | DATE LAB. CONTACTED | DATE RECEIVED                                                       |
| 21 (21940)          |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
| B. Other Discrep    | ancies:             | 18                                                                  |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |
|                     |                     |                                                                     |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

## **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of preparation, and subsequently from the time of preparation to the time of analysis.

Complete table for all samples and circle the analysis date for samples not within criteria

| SAMPLE ID | DATE<br>SAMPLED | CYANIDE<br>DATE<br>ANALYSIS | Hg DATE<br>ANALYSIS | OTHERS<br>DATE<br>ANALYSIS | рН    | SULFIDE | ACTION     |
|-----------|-----------------|-----------------------------|---------------------|----------------------------|-------|---------|------------|
|           |                 |                             |                     |                            |       |         |            |
| SAMPLES   | DIGESTED AI     | ND ANALYZE                  | D WITHIN T          | HE METHO                   | D REC | OMMENDE | ED HOLDING |
|           |                 |                             |                     |                            |       |         |            |
|           |                 |                             |                     |                            |       |         |            |
|           |                 |                             |                     |                            |       |         |            |
|           |                 |                             |                     | ]                          |       |         |            |

## Criteria

| Metals – 180 days from time of collection.                                                    |
|-----------------------------------------------------------------------------------------------|
| Mercury – 28 days from time of collection.                                                    |
| Hexavalent Chromium (solids)- 30/7 from day of collection; 48 hrs aqueous samples             |
| Cyanide – 14 days from time of collection                                                     |
| Sulfide - 14 days from time of collection                                                     |
| pH measurements of aqueous samples upon receipt at the laboratory (criteria pH ≤ 2 for metals |
| pH ≥ 12 for cyanide)                                                                          |
| pH ≥ 12 for cyanide)                                                                          |

Actions: Qualify positive results/nondetects as follows:

| If holding times are exceeded, estimate positive results (J) and rejects nondetects (R). |
|------------------------------------------------------------------------------------------|
| If pH > 2 for metals or pH < 12 for cyanide, positive results (J) and nondetects (UJ).   |
| Cooler Temperature (Criteria: 4°C + 2°C):3.6°C                                           |
| If cooler temperature is > 10°C, flag non-detects as (UJ) and detects as (J).            |

| All criteria were met _ | _N/A |
|-------------------------|------|
| Criteria were not met   |      |
| and/or see below        |      |

## **ICP-MS TUNE ANALYSIS**

Is the ICP-MS tuned prior to calibration?

Yes or No?

Does the % RSD exceeds 5% for any isotope in the tuning solution?

Yes or No?

#### Action:

**NOTES:** For ICP-MS tunes that do not meet the technical criteria, apply the action to all samples reported from the analytical run.

- 1. If the ICP-MS instrument was not tuned prior to calibration, the sample data should be qualified as unusable (R).
- 2. If the tuning solution was not analyzed or scanned at least 5x consecutively or the tuning solution does not contain the required analytes spanning the analytical range, the reviewer should use professional judgment to determine if the associated sample data should be qualified. The reviewer may need to obtain additional information from the laboratory. The situation should be recorded in the Data Review Narrative and noted for Contract Laboratory Program Project Officer (CLP PO) action.
- 3. If the resolution of the mass calibration is not within 0.1 u for any isotope in the tuning solution, qualify all analyte results that are ≥ Method Detection Limit (MDL) associated with that isotope as estimated (J), and all non-detects associated with that isotope as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.
- 4. If the %RSD exceeds 5% for any isotope in the tuning solution, qualify all sample results that are ≥ MDL associated with that tune as estimated (J), and all non-detects associated with that tune as estimated (UJ). The situation should be recorded in the Data Review Narrative and noted for CLP PO action.

Table 2. ICP-MS Tune Actions for ICP-MS Analysis

| ICP-MS Tune Results                            | Action for Samples                              |  |
|------------------------------------------------|-------------------------------------------------|--|
| Tune not performed                             | Qualify all results as unusable (R)             |  |
| Tune not performed properly                    | Use professional judgment                       |  |
| Resolution of mass calibration not within 0.1u | Qualify results that are ≥ MDL as estimated (J) |  |
|                                                | Qualify non-detects as estimated (UJ)           |  |
| % RSD > 5%                                     | Qualify results that are ≥ MDL as estimated (J) |  |
|                                                | Qualify non-detects as estimated (UJ)           |  |

Note:

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

## **INSTRUMENT CALIBRATION (SECTION 1)**

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data. Minimum of 2 calibration points for ICP-AES and ICP-MS; 5 points for Hg; and 4 points for cyanide. One initial calibration standard at the CRQL level for cyanide and Hg. If no, write in the non-compliance section of the data review narrative.

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration Verification standards (ICV or CCV).

| Acceptance Criteria     | ICV %R    | CCV %R    |
|-------------------------|-----------|-----------|
| Metals by 6010C/6020    | 100 + 10% | 100 + 10% |
| Mercury/Metals by 7000s | 100 + 10% | 100 + 20% |
| Cyanide                 | 100 + 15% | 100 + 15% |
| Sulfide                 | 100 + 15% | 100 + 15% |

| DATE  | ICV/CCV#     | ANALYTE       | %R      | ACTION                  | SAMPLES<br>AFFECTED |
|-------|--------------|---------------|---------|-------------------------|---------------------|
|       |              |               |         |                         |                     |
| INITI | AL AND CONTI | NUING CALIBRA | N NOITA | <b>IEET METHOD SPEC</b> | IFIC CRITERIA       |
|       |              |               |         |                         |                     |
|       |              |               |         |                         |                     |
|       |              |               |         |                         |                     |

ACTIONS: If any analyte does not meet the %R criteria, follow the actions stated below. Qualify five samples on either side of the ICV/CCV out of control limit.

| Estimate positive results (J) if:          | ICV             | CCV         |
|--------------------------------------------|-----------------|-------------|
| Metals by 6010C/6020                       | 111 – 125%      | 111 – 125%  |
| Mercury/Metals by 7000s                    | 111 – 125%      | 111 – 135%  |
| Cyanide                                    | 116 – 130%      | 116 130%    |
| Sulfide                                    | 116 – 130%      | 116 – 130%  |
| Estimate positive results and nondetects ( | U/UJ) if:       |             |
| Metals by 6010C/6020                       | 75 <b>–</b> 89% | 75 – 89%    |
| Mercury/Metals by 7000s                    | 75 – 89%        | 65 – 79%    |
| Cyanide                                    | 70 – 84%        | 70 – 84%    |
| Sulfide                                    | 70 – 84%        | 70 – 84%    |
| Reject positive results and nondetects (R) | if:             |             |
| Metals by 6010C/6020                       | <75%, >125%     | <75%, >125% |
| Mercury/Metals by 7000s                    | <75%, >125%     | <65%, >135% |
| Cyanide                                    | <70%, >130%     | <70%, >130% |
| Sulfide                                    | <70%, >130%     | <70%, >130% |

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

- III. INSTRUMENT CALIBRATIONS (SECTIONS 2 & 3)
- 2. Analytical Sequence

Did the laboratory use the proper number of standards for calibration as described in the method?

Yes or No.

B. Were calibrations performed at the beginning of each analysis?

Yes or No

Were calibration verification standards analyzed at the beginning of sample analysis and the proper frequency according to the method?

Yes or No

D. Where the AA correlation coefficients (r) for the calibration curves
 ≥ 0.995? If r < 0.995, estimate positive results and nondetects (J/UJ).
 It is not necessary to qualify results if the laboratory used order regression.</li>

Yes or No.

Data quality may be affected if any of the above answer are "no". Use professional judgment to determine the severity of the effect and qualify the data accordingly. Discuss any actions below and list the sample affected.

## 3. Other Check Standards

Laboratories may analyze an additional check standard after establishing the calibration curve. This standard may contain low level concentrations of target analytes and be analyzed and evaluated by the laboratory similar to a CLP "CRLD" standard (CRI for ICP, CRA for AA, and/or mid-range standard for CN and Sulfide). A 100 ± 20% recovery acceptance limit should be used by the validator to evaluate the standard.

ACTIONS: If any analyte does not meet the %R criteria, follow the action needed below. Qualify 50% of either side of the CRI/CRA out of control limits.

| % R                  |      | %R < 50%      | %R = 79% | 50- | %R =<br>150% | 121- | %R ><br>150% | Affected Range       |
|----------------------|------|---------------|----------|-----|--------------|------|--------------|----------------------|
| Qualify Positi       | ve/N | ondetects Res | ults     |     |              |      |              | •                    |
| Metals<br>6010C/6020 | by   | R/R           | J/UJ     |     | J/A          |      | R/A          | <2x CRI conc.        |
| Hg/metals<br>7000s   | by   | R/R           | J/UJ     |     | J/A          |      | R/A          | <1.5x CRI conc.      |
| Cyanide              |      | R/R           | J/UJ     |     | J/A          |      | R/A          | <1.5x mid std. conc. |
| Sulfide              |      | R/R           | J/UJ     | 1   | J/A          |      | R/A          | <1.5x mid std. conc. |

CRI is not required for AI, Ba, Ca, Fe, Mg, Na, and K.

**NOTE:** CRLD standard within laboratory and method specific criteria.

| All criteria were metN/A |
|--------------------------|
| Criteria were not me     |
| and/or see below         |

Table 4. Calibration Actions for ICP-MS Analysis

| Calibration Result                                                   | Action for Samples                                                                         |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Calibration not performed                                            | Qualify all results as unusable (R)                                                        |
| Calibration incomplete                                               | Use professional judgment Qualify results that are ≥ MDL as estimated (J)                  |
| Not at least one calibration standard at or                          | Qualify non-detects as estimated (UJ)  Qualify results that are ≥ MDL but < 2x the         |
| below the CRQL for each analyte                                      | CRQL as estimated (J) Qualify non-detects as estimated (UJ)                                |
| Correlation coefficient < 0.995; %D outside ±30%; y-intercept ≥ CRQL | Qualify results that are ≥ MDL as estimated (J) Qualify non-detects as estimated (UJ)      |
| Correlation coefficient < 0.990                                      | Qualify results that are ≥ MDL as estimated (J) Qualify non-detects as unusable (R)        |
| ICV/CCV %R < 75%                                                     | Qualify results that are ≥ MDL as unusable (R) Qualify all non-detects as unusable (R)     |
| ICV/CCV %R 75-89%                                                    | Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as estimated (UJ) |
| ICV/CCV %R 111-125%                                                  | Qualify results that are ≥ MDL as estimated high (J+)                                      |
| ICV/CCV %R > 125%                                                    | Qualify results that are ≥ MDL as estimated high (J+)                                      |
| ICV/CCV %R > 160%                                                    | Qualify results that are ≥ MDL as unusable (R)                                             |

| All criteria were met |   |
|-----------------------|---|
| Criteria were not me  | 1 |
| and/or see belowX     |   |

## IV. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including equipment, field, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in Sections 1 & 2 below. A separate worksheet page should be used for soil and water blanks.

| Laboratory blant | KS                 |             | Matrix:Ac                  | queous              |  |  |
|------------------|--------------------|-------------|----------------------------|---------------------|--|--|
| DATE<br>ANALYZED | ICB/CCB#           | PREP<br>BLK | ANALYTE                    | CONCENTRATION UNITS |  |  |
| No_analyte_c     | letected_in_met    | hod_blanks  | _above_reporting_limits    |                     |  |  |
| Field/Equipment  |                    |             | Matrix:Ac                  | Matrix:Aqueous      |  |  |
| DATE<br>ANALYZED | EQUIPMENT<br>BLANK | T/FIELD     | ANALYTE                    | CONCENTRATION UNITS |  |  |
| Field/equipme    | ent_blank_analy:   | zed_as_par  | t_of_this_data_package<br> |                     |  |  |
|                  |                    |             | 15.                        |                     |  |  |

Note: Target analytes not detected in the field/equipment blank except for the cases described in this document:

- Al, Ba, Ca, Mn, Hg, and Na detected in the field blank at a concentration below the reporting limit. The laboratory qualified the results with a B qualifier. No further
- Al, Ba, Ca, Mn, Hg and Na detected in the equipment blank at a concentration below the reporting limit.

The laboratory qualified the results with a B qualifier. No further qualification performed.

# Table. Field/Rinsate/Trip Blank Actions for ICP-MS Analysis

| Blank Result | Sample Result                             | Action for Samples                                            |
|--------------|-------------------------------------------|---------------------------------------------------------------|
| > CRQL       | ≥ MDL but ≤ CRQL                          | Report CRQL value with a "U"                                  |
|              | > CRQL but < Blank Result                 | Report at level of Blank Result with a "U"                    |
|              | > Blank Result but < 10x the Blank Result | Use professional judgment to qualify results as estimated (J) |

|          | •                                                                                                                                                                                                                     | All criteria were metX_<br>Criteria were not m<br>and/or see below | et |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----|
| IV.      | BLANK ANALYSIS RESULTS (Section 3)                                                                                                                                                                                    |                                                                    |    |
| Freque   | ency requirements                                                                                                                                                                                                     |                                                                    |    |
| at the f | ne preparation blank analyzed for each matrix, frequency of the method? stimate positive results < 10x IDL for which preparation blank we than 20 samples/batch, qualification begins at the 21 <sup>st</sup> sample. | Yes or No<br>vas not analyzed.                                     |    |
| B.       | Was an ICB analyzed?                                                                                                                                                                                                  | Yes or No                                                          |    |
| C.       | Was a CCB analyzed at the frequency stated in the method?                                                                                                                                                             | Yes or No                                                          |    |
| determ   | uality may be affected if any of the above answer is "no". Us ine the severity of the effect and qualify the data accordingly. the samples affected.                                                                  |                                                                    |    |
|          |                                                                                                                                                                                                                       |                                                                    | _  |
|          |                                                                                                                                                                                                                       |                                                                    | _  |
|          |                                                                                                                                                                                                                       |                                                                    | _  |
|          |                                                                                                                                                                                                                       | 100                                                                | _  |
|          |                                                                                                                                                                                                                       |                                                                    |    |
| Compa    | FOR SOIL SAMPLES are raw sample value with blank results in ug/L unit, or the blanks analyzed during a soil case to mg/Kg in order to come.                                                                           | npare them with the samp                                           | le |
|          | In ug/L x [Volume diluted to (mL)]/[Weight digested] x 1L/1000<br>000 g = concentration in wet weight (mg/Kg)                                                                                                         | mL x 1000g/1Kg                                                     | x  |
| Concer   | ntration, dry weight (mg/Kg) = (Wet weight concentration)/(% Sc                                                                                                                                                       | olids) x 100                                                       |    |
| BLANK    | ANALYSIS RESULTS (Sections 4,5)                                                                                                                                                                                       |                                                                    |    |
| sample   | ntamination remaining in the field or equipment blank will be us                                                                                                                                                      |                                                                    |    |

9

|                                  |                     |                                               | Criteria were not met and/or see below           |
|----------------------------------|---------------------|-----------------------------------------------|--------------------------------------------------|
| 4. Initial                       | //Continuing Cali   | bration Blanks (ICB/C                         | CB) Actions                                      |
| Are all ICB/C                    | CBs less than th    | e SQL?                                        | Yes or No                                        |
|                                  |                     | either side of the ICB/<br>the ICB/CCB value. | CCB out of control limits.                       |
| ICB/CCB#                         | ANALYTE             | CONC/UNITS                                    | SAMPLES AFFECTED                                 |
|                                  |                     |                                               |                                                  |
|                                  |                     |                                               |                                                  |
| Are the PB le                    | ss than the SQL     |                                               | Yes or No                                        |
| If yes, reject a                 | all results (R) < 1 | 0x the PB value.                              |                                                  |
| РВ                               | ANALYTE             | CONC/UNITS                                    | SAMPLES AFFECTED                                 |
|                                  |                     |                                               |                                                  |
|                                  |                     |                                               |                                                  |
| BLANK ANAL                       | YSIS RESULTS        | S (Section 6)                                 |                                                  |
| 6. Field/                        | Equipment Blan      | k (FB/EB) Actions                             |                                                  |
| Are th                           | ne FB/EB less th    | an the SQL?                                   | Yes or No                                        |
| If no, was the                   | FB/EB value alr     | eady rejected due to                          | other QC criteria? Yes or No                     |
| If no, reject (F<br>the FB/EB va |                     | s <u>&lt; 5</u> x the FB/EB valu              | e. Reject soil data with raw digest results < 5x |
| РВ                               | ANALYTE             | CONC/UNITS                                    | SAMPLES AFFECTED                                 |
|                                  |                     |                                               |                                                  |
|                                  |                     |                                               | -                                                |

All criteria were met \_\_X\_\_\_

| All criteria were metN/A |
|--------------------------|
| Criteria were not met    |
| and/or see below         |

Table 5. Calibration/Preparation Blank Actions for ICP-MS Analysis - Summary

| Blank Type             | Blank Result              | Sample Result                          | Action for Samples                                          |  |
|------------------------|---------------------------|----------------------------------------|-------------------------------------------------------------|--|
| ICB/CCB                | ≥ MDL but ≤ CRQL          | Non-detect No action                   |                                                             |  |
| ≥ MDL but ≤ CRQL       |                           | Report CRQL value with                 | a "U"                                                       |  |
| > CRQL                 |                           | Use professional judgme                | ent                                                         |  |
| ICB/CCB                | > CRQL                    | ≥ MDL but ≤ CRQL                       | Report CRQL value with a "U"                                |  |
| > CRQL but < Blank Res | sult                      | Report at level of Blank               | Result with a "U"                                           |  |
| > Blank Result         |                           | Use professional judgme                | ent                                                         |  |
| ICB/CCB                | ≤ (-MDL) but<br>≥ (-CRQL) | ≥ MDL, or non-detect                   | Use professional judgment                                   |  |
| ICB/CCB                | < (-CRQL)                 | < 10x the CRQL                         | Qualify results that are ≥ CRQL as estimated low (J-)       |  |
|                        |                           |                                        | Qualify non-detects as estimated (UJ)                       |  |
| Preparation Blank      | > CRQL                    | ≥ MDL but ≤ CRQL                       | Report CRQL value with a "U"                                |  |
| > CRQL but < 10x the B | ank Result                | Qualify results as estimated high (J+) |                                                             |  |
| ≥ 10x the Blank Result |                           | No action                              |                                                             |  |
| Preparation Blank      | ≥ MDL but ≤ CRQL          | Non-detect                             | No action                                                   |  |
| ≥ MDL but ≤ CRQL       |                           | Report CRQL value with a "U"           |                                                             |  |
| > CRQL                 | 6789.7539                 | Use professional judgment              |                                                             |  |
| Preparation Blank      | < (-CRQL)                 | < 10x the CRQL                         | Qualify results that are<br>≥ CRQL as estimated<br>low (J-) |  |
|                        |                           |                                        | Qualify non-detects as estimated (UJ)                       |  |

| and/or see below                                                                                                                                                                | not met  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| INDUCTIVELY COUPLED PLASMA (ICP) INTERFERENCE CHECK SAMPLE                                                                                                                      |          |
| The assessment of the ICP interference check sample (ICS) is to verify the labor interelement and background correction factors.                                                | ratory's |
| 1. Recovery Criteria                                                                                                                                                            |          |
| List any elements in the ICS AB and ICS A solutions which did not meet the %R criteria (80%).                                                                                   | 0 – 120  |
| DATE ELEMENT %R ACTION SAMPLES AFFECTED                                                                                                                                         |          |
| _Interference_check_sample_within_method_performance_criteria                                                                                                                   |          |
| ACTIONS:                                                                                                                                                                        |          |
| If an element does not meet the %R criteria, follow the actions stated below                                                                                                    |          |
| % R                                                                                                                                                                             |          |
| Qualify Positive/Nondetects Results                                                                                                                                             |          |
| Metals by R/R J/UJ J/A R/A 6010C/6020                                                                                                                                           |          |
| Frequency requirements  Were interference QC samples run at the frequency stated in the method                                                                                  |          |
| (beginning of the analytical run)? Yes or No                                                                                                                                    |          |
| If no,<br>ACTIONS: Estimate positive results (J) all samples for which Al, Ca, Fe, Mg > ICS value.                                                                              |          |
| The data may be affected. Use professional judgment to determine the severity of the effequalify the data accordingly. Discuss any actions below and list the samples affected. | ect and  |
|                                                                                                                                                                                 |          |
|                                                                                                                                                                                 |          |
|                                                                                                                                                                                 |          |
|                                                                                                                                                                                 |          |

| ΑII | criteria | were  | met  | tN    | N/A_ |     |
|-----|----------|-------|------|-------|------|-----|
|     |          | Crit  | eria | were  | not  | met |
|     | а        | nd/or | see  | belov | N    |     |

Table 6. Interference Check Actions for ICP-MS Analysis - Summary

| Interference Check Sample Results                            | Action for Samples                                                                                                          |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ICS not analyzed                                             | Qualify detects and non-detects as unusable (R)                                                                             |
| ICS not analyzed in proper sequence                          | Use professional judgment.                                                                                                  |
| ICS %R>150%                                                  | Use professional judgment                                                                                                   |
| ICS %R > 120% (or greater than true value + 2x the CRQL)     | Qualify results that are ≥ MDL as estimated high (J+)                                                                       |
| ICS %R 80-12-%                                               | No qualification                                                                                                            |
| ICS %R 50-79% (or less than true value – 2x the CRQL)        | Qualify results that are ≥ MDL as estimated low (J-)                                                                        |
|                                                              | Qualify non-detects as estimated (UJ)                                                                                       |
| ICSAB %R < 50%                                               | Qualify detects as estimated low (J-) and non-<br>detects as unusable (R)                                                   |
| Potential false positives in field samples with interferents | Qualify results that are ≥ MDL as estimated high (J+)                                                                       |
| Potential false negatives in field samples with interferents | Qualify results that are ≥ MDL but < 10x the ( negative value ) as estimated low (J-) Qualify non-detects as estimated (UJ) |

| All criteria v | vere i             | met _ |     |     |
|----------------|--------------------|-------|-----|-----|
| Cri            | teria <sup>,</sup> | were  | not | met |
| and/or s       | see b              | elow  | x   |     |
|                |                    |       |     |     |

## VI. MATRIX SPIKE (MS)

| Sample # _JC36373-4MS/-4MSD_(Hg)    | Matrix:Soil    | Units:ug/kg |
|-------------------------------------|----------------|-------------|
| Sample # _JC35815-1RS/-1RMSD        | Matrix:Soil    | Units:ug/kg |
| Sample # _JC36275-2AMS/-2AMSD_(Hg)_ | Matrix:Aqueous | Units:ug/l  |

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. Note that for Region 2, MS not required for: Ca, Mg, K, and Na for aqueous matrix; Al, Ca, Fe, Mg, K, Na, for soil matrix.

MS Recovery Criteria. List the percent recoveries for analytes which did not meet the %R criteria (75 – 125%); (85 – 115 % FOR Cr (VI)).

| ANALYTE | SPIKE SAMPLE       | SAMPLE            | SPIKE       | % R        | ACTION                       |
|---------|--------------------|-------------------|-------------|------------|------------------------------|
|         | RESULT (SSR)       | RESULT (SR)       | ADDED       |            |                              |
| MS/MSD  | recoveries and RPD | within laboratory | control lim | its except | t for the cases described in |
|         |                    | this do           | cument.     | •          |                              |
| Al      | 19400              | 14400             | 2830        | 177.0      | No action^*                  |
| Sb      | 0.53               | 141               | 226         | 62.1       | No action                    |
| Ca      | 5670               | 9160              | 2830        | -123.5     | No action*                   |
| Fe      | 21200              | 21500             | 2830        | -10.6      | No action*                   |
| Mg      | 6300               | 6270              | 2830        | 1.1        | No action*                   |
| Mn      | 471                | 430               | 226         | 18.1       | No action                    |
| K       | 5100               | 790               | 2830        | 228.0      | No action*                   |
| Na      | 3150               | 2660              | 2830        | 17.3       | No action*                   |
| Zn      | 398                | 54.0              | 226         | 152.2      | No action                    |
| Al      | 19000              | 14400             | 2830        | 162.8      | No action^*                  |
| Sb      | 0.53               | 142               | 226         | 62.6       | No action                    |
| Ва      | 68.4               | 417               | 226         | 152.4      | No action                    |
| Ca      | 4990               | 9160              | 2830        | -147.6     | No action*                   |
| Fe      | 19600              | 21500             | 2830        | -67.2      | No action*                   |
| Mg      | 5900               | 6270              | 2830        | -13.1      | No action*                   |
| Mn      | 475                | 430               | 226         | 19.9       | No action                    |
| K       | 4910               | 790               | 2830        | 145.8      | No action*                   |
| Na      | 3160               | 2660              | 2830        | 17.7       | No action*                   |
| Zn      | 387                | 54.0              | 226         | 147.3      | No action                    |
|         |                    |                   |             |            |                              |

Note: ^- No action taken, sample concentration high compared to the amount spiked.

No action taken, spiked sample belongs to another job.

No MS/MSD sample analyzed for the aqueous matrix, except for Hg.

ACTIONS: Matrix spike actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

If the sample results  $\geq 4x$  the spike concentration, no action is taken.

If any analyte does not meet the %R criteria, follow the actions stated below.

<sup>\*-</sup> Not required in EPA Region 2 for soil matrices.

Table 9. Spike Sample Actions for ICP-MS Analysis

| Spike Sample Results                                     | Action for Samples                                                                                       |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Matrix Spike %R < 30% Post-digestion spike %R < 75%      | Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R)   |
| Matrix Spike %R < 30% Post-digestion spike %R ≥ 75%      | Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)      |
| Matrix Spike %R 30-74% Post-digestion Spike %R < 75%     | Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as estimated (UJ) |
| Matrix Spike %R 30-74% Post-digestion spike %R ≥ 75%     | Qualify affected results that are ≥ MDL as estimated (J) and affected non-detects as estimated (UJ)      |
| Matrix Spike %R > 125% Post-digestion spike %R > 125%    | Qualify affected results that are ≥ MDL as estimated high (J+)                                           |
| Matrix Spike %R > 125%<br>Post-digestion spike %R ≤ 125% | Qualify affected results that are ≥ MDL as estimated (J)                                                 |

| Spike Sample Results                                     | Action for Samples                                                                                     |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Matrix Spike %R < 30% No post-digestion spike performed  | Qualify affected results that are ≥ MDL as estimated low (J-) and affected non-detects as unusable (R) |
| Matrix Spike %R 30-74% No post-digestion spike performed | Qualify affected results that are ≥ MDL as estimated low (J-) and non-detects as estimated (UJ)        |
| Matrix Spike %R > 125% No post-digestion spike performed | Qualify affected results that are ≥ MDL as estimated high (J+) Non-detects are not qualified           |

# 2. Frequency Criteria

A. Was a matrix spike prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for which analyte was not spiked. If more than 20 samples/batch, qualification begins at the 21<sup>st</sup> sample.

B. Was a field blank used as spiked sample?

If yes, estimate positive results (J) < 4x spike level added for the analyte.

A separate worksheet page should be used for each matrix spike

Yes or No

|            |                       | A           | All criteria were metX<br>Criteria were not met<br>and/or see below |
|------------|-----------------------|-------------|---------------------------------------------------------------------|
| VII. FIE   | ELD DUPLICATES        |             |                                                                     |
| Sample #:_ | _JC36373-4/ JC36373-5 | Matrix:Soil | Units:_ug/kg                                                        |

Field duplicate samples may be taken and analyzed as an indication of overall precision. Field duplicate analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measure only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

List the concentrations and RPDs in the field duplicate pair. RPD criteria:  $\pm$  20% for aqueous;  $\pm$  35% for soil. For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in ug/L and calculate RPD or difference for each analyte.

| ANALYTE | SQL<br>ug/L | SQL<br>ug/Kg | SAMPLE<br>RESULTS | DUPLICATE<br>RESULTS | RPD | ACTION |
|---------|-------------|--------------|-------------------|----------------------|-----|--------|
| Al      |             |              |                   |                      |     |        |
| Sb      |             |              |                   |                      |     |        |
| As      |             |              |                   |                      |     |        |
| Ва      | 1           |              |                   |                      |     |        |
| Be      |             |              |                   |                      |     |        |
| Cd      |             |              |                   |                      |     |        |
| Ca      | 1           |              |                   |                      |     |        |
| Сг      |             |              |                   |                      |     |        |
| Со      |             |              |                   |                      |     |        |
| Cu      |             |              |                   |                      |     |        |
| Fe      |             |              |                   |                      |     |        |
| Pb      |             |              |                   |                      |     |        |
| Mg      |             |              |                   |                      |     |        |
| Mn      | j           |              |                   |                      |     |        |
| Hg      |             |              |                   |                      |     |        |
| Ni      |             |              |                   |                      |     |        |
| K       |             |              | !                 |                      |     |        |
| Se      |             |              |                   |                      |     |        |
| Ag      |             |              |                   |                      |     |        |
| Na      |             |              |                   |                      |     |        |
| TI      |             |              |                   |                      |     |        |
| V       |             |              |                   |                      |     |        |
| Zn      |             |              |                   |                      |     |        |
| Cyanide |             |              |                   |                      |     |        |
| Cr(VI)  |             |              |                   |                      |     |        |
|         |             |              |                   |                      |     |        |

**Note:** Field duplicates analyzed with data set. RPD within laboratory and generally acceptable control limits for analyte concentration > 5 x CRQL. No qualification made based on RPD results

Field duplicate actions should be applied to only the sample and its duplicate.

| All criteria were metN/A |    |
|--------------------------|----|
| Criteria were not m      | et |
| and/or see below         |    |

Actions: Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are nondetects, the RPD is not calculated (NC), no action is needed.

**Table 8. Duplicate Sample Actions for ICP-MS Analysis** 

| Duplicate Sample Results                                                                                                              | Action for Samples                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Aqueous: Both original sample and duplicate sample > 5x the CRQL and 20% < RPD < 100%                                                 | Qualify those results that are ≥ CRQL as estimated (J)                                  |
| Aqueous: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 100%                                                       | Qualify those results that are ≥ CRQL as unusable (R)                                   |
| Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and 35% < RPD < 120%                                           | Qualify those results that are ≥ CRQL as estimated (J)                                  |
| Soil/Sediment: Both original sample and duplicate sample > 5x the CRQL and RPD ≥ 120%                                                 | Qualify those results that are ≥ CRQL as unusable (R)                                   |
| Original sample or duplicate sample ≤ 5x the CRQL (including non-detects) and absolute difference between sample and duplicate > CRQL | Qualify those results that are ≥ MDL as estimated (J) and non-detects as estimated (UJ) |

A separate worksheet page should be used for each laboratory duplicate analysis

| All criteria | were met   | N/A_    |     |
|--------------|------------|---------|-----|
|              | Criteria w | ere not | met |
| an           | d/or see b | elow    |     |
|              |            |         |     |

Units: \_\_\_-\_

# VIII. LABORATORY DUPLICATES (Section 1)

Sample # \_\_\_\_\_-

Laboratory run duplicates samples to verify laboratory consistency and precision. They are a measure of laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

### 1. Difference Criteria

Cyanide

List the concentrations of any analyte not meeting the RPD criteria ( $\pm$  20% for aqueous;  $\pm$  35% for soil). For soil duplicates, if the % solids for the sample and its duplicate differ by more than 1%, report concentrations in  $\Box g/L$  and calculate RPD or difference for each analyte.

Matrix:\_\_-\_

|         |             |              |                   |                      | egon agranous. |        |
|---------|-------------|--------------|-------------------|----------------------|----------------|--------|
| ANALYTE | SQL<br>ug/L | SQL<br>mg/Kg | SAMPLE<br>RESULTS | DUPLICATE<br>RESULTS | RPD            | ACTION |
| Al      |             |              |                   | T                    |                |        |
| Sb      |             |              |                   |                      |                |        |
| As      |             |              |                   |                      |                |        |
| Ba      |             |              |                   |                      |                |        |
| Ве      |             |              |                   |                      |                |        |
| Cd      |             |              |                   |                      |                |        |
| Ca      |             |              |                   |                      | Ì              |        |
| Cr      |             |              |                   | 1                    |                |        |
| Co      |             |              |                   |                      |                |        |
| Cu      |             |              |                   |                      |                |        |
| Fe      |             |              |                   |                      |                |        |
| Pb      |             |              |                   |                      |                |        |
| Mg      | 1           |              |                   |                      |                |        |
| Mn      |             |              |                   |                      |                |        |
| Hg      |             |              |                   |                      |                |        |
| Ni      | 1           |              |                   |                      |                |        |
| K       |             |              |                   |                      |                |        |
| Se      | 1           |              |                   |                      |                |        |
| Ag      |             |              |                   |                      |                |        |
| Na      |             |              |                   |                      |                |        |
| TI      |             |              |                   |                      |                |        |
| V       |             |              |                   |                      |                |        |
| Zn      |             |              |                   |                      |                |        |
| Cr(VI)  |             |              |                   |                      |                |        |
| Sulfide |             | †            |                   |                      |                |        |

Note: No laboratory duplicate analyzed with this data package

Laboratory duplicates actions should be applied to all other samples of the same matrix type. This qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate.

All criteria were met \_\_X\_ Criteria were not met and/or see below \_\_\_\_

Actions: Indicates which criterion was used to evaluate precision by circling either the RPD or SQL for each element. If both sample and duplicate are non-detects, the RPD is not calculated (NC), no action is needed.

Table 8. Field Duplicate Sample Actions for ICP-MS Analysis

| Sample Type   | Field Duplicate Result                                                                         | Action for Samples                                                               |
|---------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Aqueous       | Sample and its field duplicate<br>≥ 5x the CRQL and RPD ><br>20%                               | Qualify sample and its duplicate as estimated (J)                                |
|               | Sample and/or its field duplicate < 5x the CRQL and absolute difference > the CRQL             | Qualify results > the MDL as estimated (J) Qualify non-detects as estimated (UJ) |
| Soil/Sediment | Sample and its field duplicate<br>≥ 5x the CRQL and RPD ><br>50%                               | Qualify sample and its duplicate as estimated (J)                                |
|               | Sample and/or its field<br>duplicate < 5x the CRQL and<br>absolute difference > 2x the<br>CRQL | Qualify results > the MDL as estimated (J)                                       |
|               |                                                                                                | Qualify non-detects as estimated (UJ)                                            |

### 2. Frequency Criteria

A. Was a laboratory duplicate prepared at the frequency stated in the method (1/20)? Yes or No

If no, estimate positive results (J) for the analyte which duplicate was not performed. If more than 20 samples/batch, qualification begins at the 21<sup>st</sup> sample.

B. Was a field blank used for laboratory duplicate analysis? Yes or No

If yes, estimate positive results (J) for the analyte if field blank was used for duplicate analysis.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# IX. LABORATORY CONTROL SAMPLE (LCS/LCSD)

The assessment of the LCSs is to determine both intralaboratory contamination and matrix specific precision and accuracy. Note that for Region 2, LCS is not required for aqueous Hg and Cyanide.

### LCS Recoveries Criteria

### A. <u>Aqueous LCS</u>/Solid LCS

List any LCS recoveries not within %R criteria (80 – 120%) and the samples affected.

| DATE      | ELEMENT                | % R           | ACTION | SAMPLES AFFECTED |
|-----------|------------------------|---------------|--------|------------------|
| Recoverie | s_within_laboratory_co | ntrol_limits_ |        |                  |
|           | W 200                  |               |        |                  |
|           |                        |               |        |                  |
|           |                        |               |        |                  |
|           |                        |               |        |                  |

ACTIONS: If analyte does not meet the %R criteria, follow the actions stated below:

Table 7. LCS Actions for ICP-MS Analysis

| LCS Result | Action for Samples                                                                         |
|------------|--------------------------------------------------------------------------------------------|
| %R 40-69%  | Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as estimated (UJ) |
| %R > 130%  | Qualify results that are ≥ MDL as estimated high (J+)                                      |
| %R 70-130% | No qualification                                                                           |
| %R < 40%   | Qualify results that are ≥ MDL as estimated low (J-) Qualify non-detects as unusable (R)   |
| %R > 150%  | Qualify detects as unusable (R); non-<br>detects no qualification                          |

| All criteria were met | X       |
|-----------------------|---------|
| Criteria were         | not met |
| and/or see belov      | v       |

# 2. Frequency Criteria

A. Was a laboratory control sample prepared at the frequency stated in the method (1/20)? **Yes** or No

If no, estimate positive results (J) for the analyte if LCS was not performed.

If more than 20 samples/batch, qualification begins at the 21<sup>st</sup> sample.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

# X. ICP SERIAL DILUTION ANALYSIS (Section 1)

The assessment of the ICP serial dilution analysis is to determine the precision of the laboratory through a 5x dilution.

# 1. Percent Difference (%D) Criteria:

|          | s analys |               |          |        | ed for eac<br>the undiluted    |         |          |              |          |            |
|----------|----------|---------------|----------|--------|--------------------------------|---------|----------|--------------|----------|------------|
|          | Serial   | dilutions     | were     | not    | performed                      | for     | the      | following    | target   | analytes:  |
| for ana  |          | dilutions wer |          |        | out analytical<br>re dilution. | result  | ts did ı | not agree wi | thin 10% | difference |
| List the | %Ds fo   | r analytes w  | hich did | not me | eet the %D c                   | riteria | (10%/    | /100%)       |          |            |
| Sample   | #_JC     | 35815-1R      |          |        | _ Matrix                       | ::S     | oil      |              | Units:   | _ug/kg     |

| ANALYTE | IDL  | 50x IDL | SAMPLE<br>RESULTS | SERIAL<br>DILUTION | %D    | ACTION    |
|---------|------|---------|-------------------|--------------------|-------|-----------|
| Al      |      |         |                   |                    |       |           |
| Sb      | 0.32 | 16      | 4.8               | 0.0                | 100   | No action |
| As      | 1.3  | 65      | 19.0              | 12.7               | 33.2  | No action |
| Ва      |      |         |                   |                    |       |           |
| Be      | 0.1  | 5.0     | 2.20              | 2.60               | 18.2  | No action |
| Cd      |      |         |                   |                    |       |           |
| Ca      |      |         |                   |                    |       |           |
| Cr      |      |         |                   |                    |       |           |
| Со      |      |         |                   |                    |       |           |
| Cu      |      |         |                   |                    |       |           |
| Fe      |      |         |                   |                    |       |           |
| Pb      |      |         |                   |                    |       | _         |
| Mg      | Ī    |         |                   |                    |       |           |
| Mn      |      |         |                   |                    |       |           |
| Hg      |      |         |                   |                    |       |           |
| Ni      |      |         |                   |                    |       |           |
| K       |      |         |                   |                    |       |           |
| Se      | 3    | 150     | 4.70              | 0.0                | 100   | No action |
| Ag      | 0.9  | 4.9     | 2.10              | 8.10               | 285.7 | No action |
| Na      |      |         |                   |                    |       |           |
| TI      | 0.44 | 22      | 3.20              | 24.7               | 671.9 | No action |
| V       |      |         |                   |                    |       |           |
| Zn      |      |         |                   |                    |       |           |

Note: Serial dilution within method performance criteria; initial concentration < 50 idl.

| All criteria were metX |
|------------------------|
| Criteria were not met  |
| and/or see below       |

ACTIONS: Actions apply to all samples of the same matrix. The qualification will also be applied to the results of all samples within a given area of the site, if deemed appropriate. Qualify only samples with raw results > 50x MDL.

Flag results with an (E) for elements exhibiting %D > 10%. Estimate (J) positive results > 50x MDL for elements that exhibited %D > 10 but < 100.

Reject (R) positive results > 50x MDL for elements which exhibited %D  $\geq 100\%$ .

## SERIAL DILUTION ANALYSIS (Section 2)

## 2. Frequency Criteria

A. Was a serial dilution analysis prepared as required by the method? Yes or No

If no, estimate positive results ≥ 50x MDL (J) for the analyte which serial dilution analysis was not performed.

B. Was a field blank used for serial dilution analysis?

Yes or No

If yes, estimate positive results  $\geq$  50x MDL (J) for the analyte if field blank was used for serial dilution analysis.

Table 10. Serial Dilution Actions for ICP-MS Analysis

| Serial Dilution Result                                            | Action for Samples                                                 |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Aqueous: Sample concentration > 50x MDL and 10% < %D < 100%       | Qualify affected results whose raw data are > MDL as estimated (J) |  |  |
| Aqueous:<br>Sample concentration > 50x MDL and %D ≥<br>100%       | Qualify affected results whose raw data are > MDL as unusable (R)  |  |  |
| Soil/Sediment: Sample concentration > 50x MDL and 15% < %D < 120% | Qualify affected results whose raw data are > MDL as estimated (J) |  |  |
| Soil/Sediment: Sample concentration > 50x MDL and %D ≥ 120%       | Qualify affected results whose raw data are > MDL as unusable (R)  |  |  |
| Interferences present                                             | Use professional judgment                                          |  |  |

A separate worksheet page should be used for each serial dilution analysis.

|     |                                                                                                         | Criteria were not met and/or see below   |
|-----|---------------------------------------------------------------------------------------------------------|------------------------------------------|
| XI. | ICP-MS INTERNAL STANDARDS                                                                               |                                          |
|     | Are internal standard added to the sample?                                                              | Yes_or No?                               |
|     | Are the proper number of internal standard added to the sample                                          | ? Yes or No?                             |
|     | Is the % Relative Intensities for all internal standards in a sample response in the calibration blank? | e is within 60-125% of the<br>Yes or No? |
|     | Note:_ICP-OES_internal_standards_used;_relative_intensities_v<br>_document_performance_criteria         | within_the_guidance_                     |
|     |                                                                                                         |                                          |

All criteria were met N/A

#### Action:

NOTE: Apply the action to the affected analytes for each sample that does not meet the internal standard criteria.

- 1. If no internal standards were analyzed with the run, the sample data should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP Project Officer (CLP PO) action.
- 2. If less than five of the required internal standards were analyzed with the run, or a target analyte(s) is (are) not associated to an internal standard, the sample data, or analyte data not associated to an internal standard should be qualified as unusable (R). Record this in the Data Review Narrative and note for CLP PO action.
- 3. If the % Relative Intensities for all internal standards in a sample is within 60-125% of the response in the calibration blank, the sample data should not be qualified.
- 4. If the %RI for an internal standard in a sample is not within the 60-125% limit, qualify the data for those analytes associated with the internal standard(s) outside the limit as follows:
  - a. If the sample was reanalyzed at a two-fold dilution with internal standard %RI within the limits, report the result of the diluted analysis without qualification. If the %RI of the diluted analysis was not within the 60-125% limit, report the results of the original undiluted analyses and qualify the data for all analytes that are ≥ Method Detection Limit (MDL) in the sample associated with the internal standard as estimated (UJ).
  - b. If the sample was not reanalyzed at a two-fold dilution, the reviewer should use professional judgment to determine the reliability of the data. The reviewer may determine that the results are estimated (J) or unusable (R).

Table 11. Internal Standard Actions for ICP-MS Analysis

| Internal Standard Results                                                                                                                 | Action for Samples                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| No internal standards                                                                                                                     | Qualify all results as unusable (R)                                                                                                                |
| < 5 of the required internal standards                                                                                                    | Qualify all results as unusable (R)                                                                                                                |
| Target analyte not associated with internal standard                                                                                      | Qualify all analyte results not associated with an internal standard as unusable (R)                                                               |
| % RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is between 60% and 125%          | Do not qualify the data                                                                                                                            |
| % RI < 60% or > 125%, original sample reanalyzed at 2-fold dilution, and % RI of diluted sample analysis is outside the 60% to 125% limit | Qualify analytes associated with the failed internal standard that are ≥ MDL as estimated (J) and qualify associated non-detects as estimated (UJ) |
| Original sample not reanalyzed at 2-fold dilution                                                                                         | Use professional judgment Qualify sample results as estimated (J) or unusable ®                                                                    |

### XII. DETECTION LIMITS RESULTS

The detection limit assessment is to verify that samples results are within instrument calibration range or linear range (ICP).

Instrument Detection Limits (IDL). Note IDL is not required for Cyanide.

- A. IDL/MDL (or lowest quantitation limit used) results were present and found to be allevels that meet the project objectives? Yes or No
- B. IDL/MDL (or lowest quantitation limit used) were not met for the following elements:
- Reporting Requirements
- A. Were sample results on Form I (or equivalent) reported down to the IDL/MDL or lowest quantitation limit used for all analytes? Yes or No
- B. Were sample weights, volumes, and dilutions taken into account when reporting results (positive and nondetects)? Yes or No

If no, the reported results may be inaccurate. Request the laboratory resubmit the corrected data.

- Sediment Sample Percent Solids (% solids):
- A. Were the % solids for any sediment samples < 50% but ≥ 10%? Yes or No If yes, estimate positive results and nondetects (J/UJ) if the % solids is 10-50%. List the affected samples:\_\_\_\_\_
- B. Were the % solids for any sediment samples < 10%?

  Yes or No

  If yes, reject all results (R) if the % solid is < 10%. List the affected samples: N/A
- XI. TOTAL/DISSOLVED OR INORGANIC/TOTAL ANALYTES
- A. Were any analyses performed for dissolved as well as total analytes on the same sample(s)? Yes or **No**
- B. Were any analyses performed for inorganic as well as total analytes on the same sample(s)? Yes or **No**

If yes, compare the differences between dissolved (or inorganic) and total analyte concentrations. Compute each difference as a percent of the total analyte only when both of the following conditions are fulfilled:

- (1) The dissolved (or inorganic) concentration is greater than total concentration, and
- (2) greater than or equal to 5xMDL.

|               |                                |                                           |                   |                                   |                           | ria were met _<br>Criteria were<br>nd/or see beld | not met    |
|---------------|--------------------------------|-------------------------------------------|-------------------|-----------------------------------|---------------------------|---------------------------------------------------|------------|
| C.            | Is any dissolved than 20%?     | d (or inorganic) co                       |                   | greater tha<br>es or <u>No</u>    | n its total               | concentration                                     | by more    |
| D.            | Is any dissolved than 50%?     | d (or inorganic) co                       |                   | greater tha<br>⁄es or <u>No</u>   | n its total               | concentration                                     | by more    |
|               | percent differen               | ce is greater th<br>ated. If the differen |                   |                                   |                           |                                                   |            |
| XII.          | SAMPLE QUAN                    | ITITATION                                 |                   |                                   |                           |                                                   |            |
| The sar       | mple quantitation              | evaluation is to v                        | erify laborate    | ory quantita                      | tion result               | is.                                               |            |
|               | Sample results arameters.      | fall within the line                      | ar range for      | ICP and w                         | vithin the o              | calibration ran                                   | ge for all |
| dilution      | If samples resu performed?     | lts were beyond th                        | ne linear ran     | ge/calibrati                      | on range o                | of the instrume                                   | ent, were  |
| List the      | affected sample                | s/elements/dilution                       | n:                |                                   |                           |                                                   |            |
| In the s      | pace below, plea               | ase show a minim                          | um of one sa      | ımple calcu                       | lation per                | method:                                           |            |
| ICP/ICF       | P-MS                           | Computer printou                          | it                |                                   |                           |                                                   |            |
| <u>Hq/Met</u> | als by AA                      | Computer printou                          | t                 |                                   |                           |                                                   |            |
| <u>Hexava</u> | llent Chromium                 |                                           |                   |                                   |                           |                                                   |            |
| Cyanide       | <u>e</u>                       |                                           |                   |                                   |                           |                                                   |            |
| <u>Others</u> |                                |                                           |                   |                                   |                           |                                                   |            |
|               |                                | llowing equation noncentrations (mg/      |                   | ssary to co                       | nvert raw                 | data values re                                    | ported in  |
| Conc. ii      | n ug/L x <u>Volume</u><br>Weig | diluted to, mL xht digested, g            | 1L x 1<br>1000 mL | 1 <u>000 g</u> x <u>1</u><br>1 Kg | <u>mg</u> = co<br>1000 mg | oncentration<br>in wet weight<br>mg/Kg            |            |
| In addit      | ion the sample re              | esults are convert                        | ed to dry we      | ight by usin                      | g the perc                | cent solid calc                                   | ulations:  |

Wet weight concentration x 100 = final concentration, dry weight (mg/Kg) % solids

### **OVERALL ASSESSMENT**

### Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the QC criteria previously discussed.
- 2. Write a brief Data Review Narrative to give the user an indication of the analytical limitations of the data. Note any discrepancies between the data and the Sample Delivery Group (SDG) Narrative for Contract Laboratory Program Project Officer (CLP PO) action. If sufficient information on the intended use and required quality of the data is available, the reviewer should include an assessment of the data usability within the given context.
- 3. If any discrepancies are found, the laboratory may be contacted by the Region's designated representative to obtain additional information for resolution. If a discrepancy remains unresolved, the reviewer may determine that qualification of the data is warranted.

| Note: |         | <br> |
|-------|---------|------|
|       |         |      |
|       |         |      |
|       |         | <br> |
|       |         | <br> |
|       | 5,0,000 | 20   |